SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L4X0:0346 6612 ;pers:(Bergström Sven Professor)"

Sökning: L4X0:0346 6612 > Bergström Sven Professor

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Marie, 1962- (författare)
  • Immunopathogenesis of relapsing fever borreliosis
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Relapsing fever (RF) is caused by different species of Borrelia transmitted by soft ticks or by the human body louse. Illness is characterized by reappearing peaks of high concentrations of spirochetes in blood, concordant with fever peaks separated by asymptomatic periods. Neuroborreliosis is one of the most severe manifestations of RF borreliosis. To understand the immune response during early RF, we analyzed immune cells in brain and kidney of mice infected with B. crocidurae during the acute infection. Our results indicate that brain defense is comprised primarily of innate immune cells. Despite the infiltration of innate immune cells, Borrelia was not completely eradicated. A failure of the host brain to clear the bacteria may give the pathogen a niche where it can persist. Using our mouse model, we revealed that Borrelia duttonii could persist in the mouse brain for up to 270 days, without being present in the circulation. The infection was silent with no change in host gene expression, and the spirochetes could re-enter the circulation after immunosuppression. We propose that the brain is used by the pathogen to evade host immunity and serves as a possible natural reservoir for B. duttonii, a spirochete that has rarely been found in any mammalian host other than man. Borrelia-induced complications during pregnancy have been reported, and are especially common in RF. In our established mouse model of gestational RF, we could show that the fetuses suffered from severe pathology and growth retardation, probably as a consequence of placental destruction. We could also show trans-placental transmission of the bacteria leading to neonatal RF. Surprisingly, pregnant dams had a lower bacterial load and less severe disease, showing that pregnancy has a protective effect during RF. We have used the gestational RF model to investigate host factors favoring disease resolution. Because the spleen is the primary organ responsible for trapping and removing blood-borne pathogens, we have compared temporal changes in spleen immune cell populations and cytokine/chemokine induction during the infection. Spleens of pregnant mice had earlier neutrophil infiltration, as well as faster and higher production of pro-inflammatory mediators. This rapid, robust response suggests a more effective host defense. Thus, an enhanced pro-inflammatory response during pregnancy imparts a distinct advantage in controlling the severity of relapsing fever infection.
  •  
2.
  • Bunikis, Ignas, 1981- (författare)
  • Borrelia channel-forming proteins : structure and function
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Borrelia is a Gram-negative, corkscrew-shaped bacterium transmitted by infected ticks or lice. Borreliae are subdivided into pathogens of two diseases: Lyme disease, caused mainly by B. burgdorferi, B. afzelii and B. garinii; and relapsing fever caused primarily by B. duttonii, B. hermsii, B. recurrentis or B. crocidurae. Both diseases differ in their manifestations, duration times and dissemination patterns. Antibiotics are the major therapeutics, although unfortunately antibiotic treatment is not always beneficial. To date, drug resistance mechanisms in B. burgdorferi are unknown. Transporters of the resistance-nodulation-division (RND) family appear to be involved in drug resistance, especially in Gram-negative bacteria. They consist of three components: a cytoplasmic membrane export system, a membrane fusion protein (MFP), and an outer membrane factor (OMP). The major antibiotic efflux activity of this type in Escherichia coli is mediated by the tripartite multidrug resistance pump AcrAB-TolC. Based on the sequence homology we conclude that the besA (bb0140), besB (bb0141) and besC (bb0142) genes code for a similar efflux system in B. burgdorferi. We created a deletion mutant of besC. The minimal inhibitory concentration (MIC) values of B. burgdorferi carrying an inactive besC gene were 4- to 8-fold lower than in the wild type strain. Animal experiments showed that the besC mutant was unable to infect mice. Black lipid bilayer experiments were carried out to determine the biophysical properties of purified BesC. This study showed the importance of BesC protein for B. burgdorferi pathogenicity and resistance to antibiotics, although its importance in clinical isolates is not known. Due to its small genome, Borrelia is metabolically and biosynthetically deficient, thereby making it highly dependent on nutrients provided by their hosts. The uptake of nutrients by Borrelia is not yet completely understood. We describe the purification and characterization of a 36-kDa protein that functions as a putative dicarboxylate-specific porin in the outer membrane of Borrelia. The protein was designated as DipA, for dicarboxylate-specific porin A. DipA was biophysically characterized using the black lipid bilayer assay. The permeation of KCl through the channel could be partly blocked by titrating the DipA-mediated membrane conductance with increasing concentrations of different organic dicarboxylic anions. The obtained results imply that DipA does not form a general diffusion pore, but a porin with a binding site specific for dicarboxylates which play important key roles in the deficient metabolic and biosynthetic pathways of Borrelia species. The presence of porin P66 has been shown in both Lyme disease and relapsing fever spirochetes. In our study, purified P66 homologues from Lyme disease species B. burgdorferi, B. afzelii and B. garinii and relapsing fever species B. duttonii, B. recurrentis and B. hermsii were compared and their biophysical properties were further characterized in black lipid bilayer assay. Subsequently, the channel diameter of B. burgdorferi P66 was investigated in more detail. For this study, different nonelectrolytes with known hydrodynamic radii were used. This allowed us to determine the effective diameter of the P66 channel lumen. Furthermore, the blockage of the channel after addition of nonelectrolytes revealed seven subconducting states and indicated a heptameric structure of the P66 channel. These results may give more insight into the functional properties of this important porin.
  •  
3.
  • Comstedt, Pär, 1977- (författare)
  • Biology of Borrelia garinii Spirochetes
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Lyme borreliosis is a tick-transmitted infectious disease. The causative agents are spiral-shaped bacteria and the most common sign of infection is a skin rash at the site of the tick bite. If not treated with antibiotics, the bacteria can disseminate and cause a variety of different manifestations including arthritis, carditis or neurological problems. The disease is a zoonosis and the bacteria are maintained in nature by different vertebrate reservoir host animals. In Europe, three different Borrelia genospecies cause Lyme borreliosis: B. burgdorferi, B. afzelii and B. garinii. The latter depends in part on birds as its reservoir host. B. garinii bacteria have been found in a marine enzootic infection cycle worldwide and also among terrestrial birds. This thesis suggests that passerine birds and seabirds constitute an important reservoir for B. garinii bacteria also with clinical importance. We have found bacteria very similar to Lyme borreliosis causing isolates in ticks infesting migrating passerine birds. The birds not only transport infected ticks, but are competent reservoir hosts, as measured by their ability to infect naïve ticks. Their role as a reservoir host is dependent on their foraging behavior, where ground-dwelling birds are of greater importance than other species. When comparing B. garinii isolates from Europe, the Arctic and North Pacific, and including isolates from seabirds, passerine birds, Ixodes ricinus ticks and Lyme borreliosis patients, we found that phylogenetic grouping was not necessarily dependent on geographical or biological origin. B. garinii from seabirds were very heterogeneous and found in all different groups. Therefore, the marine and the terrestrial infection cycles are likely to overlap. This was supported by the fact that B. garinii isolated from seabirds can establish a long-term infection in mice. Bacteria from the genospecies B. garinii are overrepresented among neuroborreliosis patients. Interestingly, many clinical B. garinii isolates are sensitive to human serum and have shown weak binding to the complement inhibitor protein factor H. By transforming a serum-sensitive B. garinii isolate with a shuttle vector containing the gene for the factor H binding protein OspE from complement-resistant B. burgdorferi, serum resistance could be increased. In addition, neurovirulent B. garinii strains recently isolated from neuroborreliosis patients were shown to express a factor H binding protein, not found in bacteria that had been kept in culture for a long time. This protein may contribute to the virulence of neuroborreliosis-causing B. garinii strains. When testing B. garinii isolates from Lyme borreliosis patients and seabirds for resistance to human serum, all members of the latter group were sensitive to even low levels of serum. This suggests that seabird isolates are not capable of infecting humans. In agreement with this, B. garinii isolated from seabirds do not appear to bind human factor H.
  •  
4.
  • Larsson, Christer, 1975- (författare)
  • Pathobiology of African relapsing fever Borrelia
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Relapsing fever (RF) is a disease caused by tick- or louse-transmitted bacteria of the genus Borrelia. It occurs worldwide but is most common in Africa where it is one of the most prevalent bacterial diseases. The main manifestation is a recurring fever which coincides with massive numbers of bacteria in the blood. Severity ranges from asymptomatic to fatal.RF is usually considered a transient disease. In contrast, B. duttonii causes a persistent, residual brain infection in C57BL/6 mice which remains long time after the bacteria are cleared from the blood. The host gene expression pattern is indistinguishable from that of uninfected animals, indicating that persistent bacteria are not recognized by the immune system nor do they cause noticeable tissue damage. This is probably due to the quite low number of bacteria residing in the brain. The silent infection can be reactivated by immunosuppression allowing bacteria to re-enter the blood. To investigate if the residual infection is in a quiescent state or if the bacteria are actively dividing, mice with residual brain infection were treated with the cell-wall disrupting antibiotic ceftriaxone, which is only active against dividing bacteria. Since all mice were cured by ceftriaxone we conclude that the bacteria are actively growing in the brain rather than being in a latent, dormant state. The brain is used as an immunoprivileged site to escape host immune defence and probably as a reservoir for bacteria.RF is a common cause of pregnancy complications, miscarriage and neonatal death in sub-Saharan Africa. We established a murine model of gestational relapsing fever to study the pathological development of these complications. B. duttonii infection during pregnancy results in intrauterine growth retardation as well as placental damage and inflammation. Spirochetes cross the maternal-foetal barrier, resulting in congenital infection. Further, pregnancy has a protective effect, resulting in milder disease during pregnancy.A clinic-based study to investigate the presence of RF in Togo was performed. Blood from patients with fever were examined for RF by microscopy, GlpQ ELISA and PCR. About 10% of the patients were positive by PCR and 13% had antibodies to GlpQ. Many RF patients originally had a misdiagnosis of malaria, which resulted in ineffective treatment. The inability of microscopic analysis to detect spirochetes demonstrates the need for tests with greater sensitivity. To provide simple, fast, cheap and sensitive diagnostics using equipment available in small health centres, a method based on enrichment of bacteria by centrifugation and detection by Giemsa staining was developed which detects <10 spirochetes/ml.To study the phylogeny of RF, IGS and glpQ were sequenced and neighbor joining trees were constructed. B. persica and B. hispanica were distant from the other species iswhereas B. crocidurae appeared to be a heterogeneous species. B. duttonii is polyphyletic in relation to B. recurrentis suggesting that the two species may in fact be the same or have a polyphyletic origin.
  •  
5.
  • Meier, Karsten, 1991- (författare)
  • Identifying, characterizing, and targeting chlamydial virulence factors to unleash the power of host cell-autonomous immunity
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Chlamydia trachomatis is the most common infectious cause of blindness and a prevalent bacterial agent of sexually transmitted infections, with an annual incidence exceeding 130 million cases. The current therapeutic approach to Chlamydia infections relies on broad-spectrum antibiotics. However, while generally effective, these antibiotics carry the risk of substantial collateral damage, for instance by promoting resistance in bystander pathogens and by adversely affecting commensal microbes. Hence, the development of a more sustainable, narrow-spectrum treatment would be advantageous. In this context, the bacterium’s highly specialized obligate intracellular lifestyle could offer a wealth of unique targets for intervention. This thesis specifically investigates the potential of harnessing the protective power of cell-autonomous immunity in our battle against Chlamydia.It is envisaged that the therapeutic exploitation of cell-autonomous immunity will initially necessitate three pivotal steps. Firstly, it will require identifying protective host cellular defense programs and counteracting virulence factors, which could serve as potential molecular targets. Secondly, it will be crucial to determine the molecular mechanisms by which the pathogen’s virulence factors suppress the host cellular defenses. Thirdly, pharmacological means to target the identified virulence factors or host cellular defense programs will need to be identified. This thesis outlines three independent projects, executed concurrently, to advance our knowledge at these three steps.The first project involved the implementation of an innovative molecular genetic screening approach, which was devised to reveal host cellular defense mechanisms that could effectively restrict the growth of C. trachomatis provided they were not actively suppressed by the pathogen. This investigation culminated in the discovery of a mutant C. trachomatis strain that lacks the ability to effectively evade xenophagy. Overall, this finding highlighted Chlamydia’s ability to evade this defense mechanism as a potential novel target for therapeutic intervention.The second project encompassed the molecular characterization of CpoS, a C. trachomatis virulence factor previously identified to counteract cell-autonomous immunity by inhibiting induction of type-I interferon responses and premature host cell death. The analyses revealed that CpoS manipulates host cellular membrane trafficking and suppresses host cellular type-Iinterferon responses through its interactions with the host factor Rab35.The third project involved a compound screening campaign that identified several novel selective anti-chlamydial compounds. Interestingly, one molecule exhibited reduced activity in xenophagy-deficient cells, implying a potential involvement of xenophagy in its mechanism of action.In summary, this research pinpointed xenophagy as a potential defensive mechanism against C. trachomatis, offered in-depth understanding of the operational mode of the virulence factor CpoS, and discovered new selective therapeutic alternatives, which in part utilize xenophagyin their mechanism of action. Consequently, this thesis provides a comprehensive overview of the transition from fundamental research to the more application-oriented domain of drug discovery and may inspire the development of more sustainable therapeutic strategies for the clinical handling of Chlamydia infections.
  •  
6.
  • Nelson, Maria, 1979- (författare)
  • Host responses to malaria and bacterial co-­infections
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The two main causes of child mortality and morbidity in Africa are malaria and invasive bacterial diseases. In addition, co-infections in sub-Saharan Africa are the rule rather than the exception. However, not much is known about the host-pathogen interaction during a concomitant infection or how it affects the outcome of disease.In order to study the immunological responses during malaria and bacterial co-infections, we established a co-infection mouse model. In these studies we used two pathogenic bacteria found in malaria co-infected patients: Streptococcus pneumoniae and Relapsing fever Borrelia duttonii.Hosts co-infected with malaria and Borrelia showed greatly increased spirochetal growth but low parasite densities. In addition, the co-infected hosts presented symptoms of experimental-cerebral malaria, in an otherwise unsusceptible mouse model. This was found to be a consequence of a dysregulated immune response due to loss of timing and control over regulatory mechanisms in antigen presenting cells thus locking the host in an inflammatory response. This results in inflammation, severe anemia, internal organ damage and pathology of experimental cerebral malaria.On the other hand, in the malaria - S. pneumoniae co-infection model we found that co-infected hosts cleared the bacterium much more efficiently than the single infected counterpart. This efficiency of clearance showed to be neutrophil dependent. Furthermore, in vitro studies revealed that neutrophils isolated from malaria-infected hosts present an altered migratory effect together with a significantly increased capacity to kill S. pneumoniae. This suggests that a malaria infection primes neutrophils to kill S. pneumoniae more efficiently.Furthermore, a study was carried out on plasma samples from Rwandan children under the age of five, on which a full metabolomics profile was performed. We showed that these children could be divided in different disease categories based on their metabolomics profile and independent of clinical information. Additionally, the mild malaria group could further be divided in two sub-groups, in which one had a metabolomic profile resembling that of severe malaria infected patients. Based on this, metabolite profiling could be used as a diagnostic tool to determine the distinct phase, or severity of a malaria infection, identify risk patients and provide helpful and correct therapy. 
  •  
7.
  • Nunez-Otero, Carlos, 1992- (författare)
  • Novel inhibitors of Chlamydia trachomatis virulence
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Chlamydia trachomatis is an obligate intracellular bacterium that infects over 100 million people globally every year. Chlamydia infections can be persistent, cause infertility and blindness, adding an economical burden in the healthcare systems. Moreover, Chlamydia infections are treated with broad-spectrum antibiotics that contribute to the selection of antibiotic resistant bacteria in the commensal flora. For this reason, novel compounds with specificity against C. trachomatis would be important for treatment of Chlamydia infections.We have developed a new class of substituted 2-pyridone amides that inhibited development of C. trachomatis. While bacterial growth was only affected to a limited extent, the produced progeny bacteria had impaired capacity to infect new cells. The compounds presented no toxicity in human or mouse cell lines and they did not inhibit growth of bacteria from the normal flora. Structure activity relationship (SAR) development of 2-pyridones lead to compounds with effect at nanomolar concentrations. Further modifications of the C3 part of the molecules resulted in isostere compounds with even a higher potency. By exploring the C8 position, we observed that methylsulfonamide substituents improved the pharmacokinetic properties and enabled oral uptake in mice. This discovery opens the door for oral treatment.Among 2-pyridone amides, KSK213 was one of the most potent and we investigated the mode of action on the life cycle of C. trachomatis. KSK213 reduced transcription by the end of the developmental cycle and upon infection of new host cells. Mutations in RNA helicase and RNAse III genes, involved in transcription, mediated resistance to KSK213. It also attenuated the infectivity in a mouse vaginal infection model. To further explore the molecular target for 2-pyridone amides in Chlamydia, we used a custom synthesized probe for affinity chromatography approaches.Here we show that 2-pyridones are potent non-toxic inhibitors of C. trachomatis that can be chemically modified to increase potency and enable oral bioavailability. These molecules have the potential to treat and prevent Chlamydia infections without affecting the normal flora.
  •  
8.
  • Pinne, Marija, 1973- (författare)
  • Porins of Borrelia burgdorferi
  • 2006
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Borrelia burgdorferi is a pathogenic spirochete which cycles between its arthropod vector and vertebrate host. If transmitted to humans, B. burgdorferi causes Lyme disease, an infection which can impair different organs, such as the skin, joints, nervous system and heart. Alterations in protein expression due to the different environments Borrelia encounters during its complicated life cycle require advanced adaptation mechanisms. The outer surface-exposed proteins play a critical role in survival and pathogenesis of Borrelia in different hosts and tissues, being involved in avoiding the host immune response, adhesion to different tissues and nutrient acquisition. This thesis aimed to characterize integral outer membrane proteins which play a role in solute and nutrient uptake, and provides support for their role in the environmental adaptation of Borrelia.In this thesis, three B. burgdorferi proteins, P13, BBA01 and P66, were shown to be porins, and characterized structurally and functionally using a combination of biochemical, biophysical and genetic methods. The channel-forming function of the 13 kDa protein, P13, was elucidated by a lipid bilayer assay. Post-translational processing of P13 occurred at the C-terminus by C-terminal processing protease (CtpA)-dependent cleavage. The membrane-spanning architecture of P13 was determined by epitope mapping and computer-based structural predictions which revealed that P13 is an unusual porin, not possessing the structural properties of conventional porins: rather than forming β-barrels, it is predicted to span the membrane with hydrophobic α-helices.p13 belongs to a paralogous gene family. The transcription of p13 and other gene family members during in vitro growth and in a mouse infection model was therefore investigated. The paralog BBA01, which has the highest sequence homology to P13, is expressed during in vitro growth in all three Lyme disease causing species, although at very low levels. Like P13, BBA01 is also processed by CtpA and exhibits very similar channel-forming activity. Furthermore, in the absence of P13, a proportion of total BBA01 protein is relocated to the bacterial surface with strong indications that BBA01 and P13 are functionally interchangeable.P66, an integrin binding protein, was also determined to be a porin. The oligomeric state of native P66, elucidated by chemical cross-linking, indicated that P66 forms trimers, as do the majority of conventional porins. Electron crystallography and a projection map of P66 crystals at 2.2 nm resolution revealed tetragonal unit cell symmetry with the area intercalated between the assembled protein structures consistent with the approximate expected size of the channel formed by P66. Finally, the biological relevance of two porins, P13 and P66, was demonstrated in a double mutant displaying a stress response as revealed by increased sensitivity to high osmolarity and elevated expression of the B. burgdorferi heat-shock protein HtrA homolog.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy