SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L4X0:0346 6612 srt2:(2010-2014);pers:(Grundström Thomas Professor)"

Sökning: L4X0:0346 6612 > (2010-2014) > Grundström Thomas Professor

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hauser, Jannek, 1981- (författare)
  • Regulation of B cell development by antigen receptors
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The developmental processes of lymphopoiesis generate mature B lymphocytes from hematopoietic stem cells through increasingly restricted intermediates. Networks of transcription factors regulate these cell fate choices and are composed of both ubiquitously expressed and B lineage-specific factors. E-protein transcription factors are encoded by the three genes E2A, E2-2 (SEF2-1), and HEB. The E2A gene is required for B cell development and encodes the alternatively spliced proteins E12 and E47. During B lymphocyte development, the cells have to pass several checkpoints verifying the functionality of their antigen receptors. Early in the development, the expression of a pre-B cell receptor (pre-BCR) with membrane-bound immunoglobulin (Ig) heavy chain protein associated with surrogate light chain (SLC) proteins is a critical checkpoint that monitors for functional Ig heavy chain rearrangement. Signaling from the pre-BCR induces survival and a limited clonal expansion. Here it is shown that pre-BCR signaling rapidly down-regulates the SLCs l5 and VpreB and also the co-receptor CD19. Ca2+ signaling and E2A were shown to be essential for this regulation. E2A mutated in its binding site for the Ca2+ sensor protein calmodulin (CaM), and thus with CaM-resistant DNA binding, makes l5, VpreB and CD19 expression resistant to the inhibition following pre-BCR stimulation. Thus, Ca2+ down-regulates SLC and CD19 gene expression upon pre-BCR stimulation through inhibition of E2A by Ca2+/CaM. A general negative feedback regulation of the pre-BCR proteins as well as many co-receptors and proteins in signal pathways from the receptor was also shown. After the ordered recombination of Ig heavy chain gene segments, also Ig light chain gene segments are recombined together to create antibody diversity. The recombinations are orchestrated by the recombination activating gene (RAG) enzymes, other enzymes that cleave/mutate/assemble DNA of the Ig loci, and the transcription factor Pax5. A key feature of the immune system is the concept that one lymphocyte has only one antigen specificity that can be selected for or against. This requires that only one of the alleles of genes for Ig chains is made functional. The mechanism of this allelic exclusion has however been an enigma. Here pre-BCR signaling was shown to down-regulate several components of the recombination machinery including RAG1 and RAG2 through CaM inhibition of E2A. Furthermore, E2A, Pax5 and the RAGs were shown to be in a complex bound to key sequences on the IgH gene before pre-BCR stimulation and instead bound to CaM after this stimulation. Thus, the recombination complex is directly released through CaM inhibition of E2A. Upon encountering antigens, B cells must adapt to produce a highly specific and potent antibody response. Somatic hypermutation (SH), which introduces point mutations in the variable regions of Ig genes, can increase the affinity for antigen, and antibody effector functions can be altered by class switch recombination (CSR), which changes the expressed constant region exons. Activation-induced cytidine deaminase (AID) is the mutagenic antibody diversification enzyme that is essential for both SH and CSR. The AID enzyme has to be tightly controlled as it is a powerful mutagen. BCR signaling, which signals that good antibody affinity has been reached, was shown to inhibit AID gene expression through CaM inhibition of E2A.  SH increases the antigen binding strength by many orders of magnitude. Each round of SH leads to one or a few mutations, followed by selection for increased affinity. Thus, BCR signaling has to enable selection for successive improvements in antibodies (Ab) over an extremely broad range of affinities. Here the BCR is shown to be subject to general negative feedback regulation of the receptor proteins as well as many co-receptors and proteins in signal pathways from the receptor. Thus, the BCR can down-regulate itself to enable sensitive detection of successive improvements in antigen affinity. Furthermore, the feedback inhibition of the BCR signalosome and most of its protein, and most other gene regulations by BCR stimulation, is through inhibition of E2A by Ca2+/CaM. Differentiation to Ab-secreting plasmablasts and plasma cells is antigen-driven. The interaction of antigen with the membrane-bound Ab of the BCR is critical in determining which clones enter the plasma cell response. Genome-wide analysis showed that differentiation of B cells to Ab-secreting cell is induced by BCR stimulation through very fast regulatory events, and induction of IRF-4 and down-regulation of Pax5, Bcl-6, MITF, Ets-1, Fli-1 and Spi-B gene expressions were identified as immediate early events. Ca2+ signaling through CaM inhibition of E2A was essential for these rapid down-regulations of immediate early genes after BCR stimulation in initiation of plasma cell differentiation.
  •  
2.
  • Oruganti, Sreenivasa Rao, 1981- (författare)
  • Regulation of activation of NF-κB by Calmodulin in T-lymphocytes
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Nuclear factor kappa B (NF-kB) is a widely expressed family of transcription factors that are involved in a diverse number of processes. These include inflammation or differentiation, survival or apoptosis, and proliferation or cell cycle arrest. NF-kB is usually associated with inhibitory kB proteins (IkB), which mask the nuclear localisation sequence (NLS) of NF-kB and renders it in the cytoplasm. Various stimuli result in the activation of the I kappa B kinase (IKK) protein complex, which phosphorylates IκB proteins and thereby marks them for degradation by the ubiquitin-proteasome pathway. Thereby NF-kB enters the nucleus and acts on its target genes. The study of T- and B-lymphocyte antigen receptor signalling to NF-kB is a field of intense investigation, with much attention being focused on the molecular scaffolding proteins Carma1, Bcl10 and MALT1 and their post-translational modifications. These have been shown to be crucial for the organization of the immunological synapse structure under the activated receptor, to which IKK is recruited and becomes activated, which subsequently leads to the activation of NF-kB. T cell receptor (TCR) activation results in a rapid increase in the intracellular Ca2+ level and NF-kB activation is known to be regulated by those increases, but the mechanisms have remained unclear. Calmodulin (CaM) is a calcium sensory protein that responds to increases in intracellular Ca2+ levels. When CaM binds Ca2+ ions, it leads to structural changes that directly as well as indirectly, through CaM dependent kinases (CaMKs), phosphatases and other enzymes, alters a variety of cellular processes, among them transcriptional regulation. Here CaM is shown to interact directly with Bcl10 in a Ca2+ dependent manner. Increases in the intracellular Ca2+ level are shown to induce the proximity of Bcl10 and CaM in vivo. Carma1 associates with Bcl10 through a CARD-CARD domain interaction that is known to be crucial for TCR signalling to NF-kB. The interaction of CaM with Bcl10 was mapped to the CARD domain and was shown to be a negative regulator for the Bcl10-Carma1 interaction. Inhibition of the CaM interaction by a point mutation within the CaM binding site of Bcl10 results in decreased binding of CaM to Bcl10 in vivo, as well as an increased ability of Bcl10 to induce NF-kB transcriptional activity, which is further enhanced by TCR activating stimuli. NF-kB activation is also shown here to be regulated by CaM indirectly through actions of CaMKII. The CaMKII is recruited to the immunological synapse where it interacts with Bcl10 in an inducible fashion and phosphorylates Bcl10. Phosphorylations of Bcl10 by CaMKII are shown to be important for the ability of Bcl10 to induce NF-κB transcriptional activity. Upon mutation of its most important CaMKII site, Bcl10 fails to activate an NF-kB reporter and an NF-kB target gene (IL-2). This mutated Bcl10 also fails to induce activating phosphorylations of IKKa/b and the kinase JNK2 but not JNK1. Furthermore, phosphorylation of Bcl10 by CaMKII regulates the interactions within the important Carma1, Bcl10, Malt1 signaling complex and the essential signal induced ubiquitinations of Bcl10 and IKKg. Phosphorylation of IKK by TAK1 is also regulated by CaMKII, and serine 82 is a putative CaMKII target site of TAK1 that appears to be important for IκBα degradation. In summary, this thesis explores that not only NF-kB but also CaM is a double-edged sword, since the multi-functional NF-kB family of transcription factors is regulated by CaM both negatively and positively.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2
Typ av publikation
doktorsavhandling (2)
Typ av innehåll
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Hauser, Jannek, 1981 ... (1)
Zhuang, Yuan, Associ ... (1)
Oruganti, Sreenivasa ... (1)
Sverinson, Eva, Prof ... (1)
Lärosäte
Umeå universitet (2)
Språk
Engelska (2)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy