SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L4X0:1402 1544 ;lar1:(hv)"

Sökning: L4X0:1402 1544 > Högskolan Väst

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Broberg, Patrik, 1983- (författare)
  • Imaging and analysis methods for automated weld inspection
  • 2014
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • All welding processes can give rise to defects, which weakens the joint and can eventually lead to the failure of the welded structure. In order to inspect welds for detects, without affecting the usability of the product, non-destructive testing (NDT) is needed. NDT includes a wide range of different techniques, based on different physical principles, each with its advantages and disadvantages. The testing is often performed manually by a skilled operator and in many cases only as spot-checks. Today the trend in industry is to move towards thinner material, in order to save weight for cost and for environmental reasons. The need for inspection of a larger portion of welds therefore increases and there is an increasing demand for fully automated inspection, including both the mechanised testing and the automatic analysis of the result. Compared to manual inspection, an automated solution has advantages when it comes to speed, cost and reliability. A comparison of several NDT methods was therefore first performed in order to determine which methods have most potential for automated weld inspection. Automated analysis of NDT data poses several difficulties compared to manual data evaluation. It is often possible for an operator to detect defects even in noisy data, through experience and knowledge about the part being tested. Automatic analysis algorithms on the other hand suffer greatly from both random noise as well as indications that originate from geometrical variations. The solution to this problem is not always obvious. Some NDT techniques might not be suitable for automated inspection and will have to be replaced by other, better adapted methods. One such method that has been developed during this work is thermography for the detection of surface cracks. This technique offers several advantages, in terms of automation, compared to existing methods. Some techniques on the other hand cannot be easily replaced. Here the focus is instead to prepare the data for automated analysis, using various pre-processing algorithms, in order to reduce noise and remove indications from sources other than defects. One such method is ultrasonic testing, which has a good ability for detecting internal defects but suffers from noisy signals with low spatial resolution. Work was here done in order to separate indications from corners from other indications. This can also help to improve positioning of the data and thereby classification of defects. The problem of low resolution was handled by using a deconvolution algorithm in order to reduce the effect of the spread of the beam.The next step in an automated analysis system is to go beyond just detection and start characterising defects. Using knowledge of the physical principles behind the NDT method in question and how the properties of a defect affect the measurement, it is sometimes possible to develop methods for determining properties such as the size and shape of a defect. This kind of characterisation of a defect is often difficult to do in the raw data, and is therefore an area where automated analysis can go beyond what is possible for an operator during manual inspection. This was shown for flash thermography, where an analysis method was developed that could determine the size, shape and depth of a defect. Similarly for laser ultrasound, a method was developed for determining the size of a defect.
  •  
2.
  • Charles Murgau, Corinne (författare)
  • Microstructure model for Ti-6Al-4V used in simulation of additive manufacturing
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis is devoted to microstructure modelling of Ti-6Al-4V. The microstructure and the mechanical properties of titanium alloys are highly dependent on the temperature history experienced by the material. The developed microstructure model accounts for thermaldriving forces and is applicable for general temperature histories. It has been applied to study wire feed additive manufacturing processes that induce repetitive heating and cooling cycles.The microstructure model adopts internal state variables to represent the microstructure through microstructure constituents' fractions in finite element simulation. This makes it possible to apply the model efficiently for large computational models of general thermomechanical processes. The model is calibrated and validated versus literature data. It is applied to Gas Tungsten Arc Welding -also known as Tungsten Inert Gas welding-wire feed additive manufacturing process.Four quantities are calculated in the model: the volume fraction of phase, consisting of Widmanstätten, grain boundary, and martensite. The phase transformations during cooling are modelled based on diffusional theory described by a Johnson-Mehl-Avrami-Kolmogorov formulation, except for diffusionless martensite formation where the Koistinen-Marburger equation is used. A parabolic growth rate equation is used for the to transformation upon heating. An added variable, structure size indicator of Widmanstätten, has also been implemented and calibrated. It is written in a simple Arrhenius format.The microstructure model is applied to in finite element simulation of wire feed additive manufacturing. Finally, coupling with a physically based constitutive model enables a comprehensive and predictive model of the properties that evolve during processing.
  •  
3.
  • Pocorni, Jetro, 1988- (författare)
  • Laser cutting and piercing: Experimental and theoretical investigation
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis concerns experimental investigations of laser cutting and piercing, with theoretical and practical discussions of the results. The thesis is made up of an introduction to laser cutting and six scientific Papers. These Papers are linked in such a way that each of them studies a different aspect of laser cutting: process efficiency in Paper I, morphology and melt flow on the laser cut front in Papers II, III and IV and laser piercing in Papers V and VI.Paper I investigates the effect of material type, material thickness, laser wavelength, and laser power on the efficiency of the cutting process for industrial state-of-the-art CO2 and fibre laser cutting machines. Here the cutting efficiency is defined in its most fundamental terms: as the area of cut edge created per Joule of laser energy.In Paper II a new experimental technique is presented which has been developed to enable high speed imaging of laser cut fronts produced using standard, commercial parameters. The results presented here suggest that the cut front produced when cutting 10 mm thick medium section stainless steel with a fibre laser and a nitrogen assist gas is covered in humps which themselves are covered in a thin layer of liquid. Paper III presents numerical simulations of the melt flow on a fibre laser ablation-driven processing front during remote fusion cutting, RFC. The simulations were validated with high speed imaging observations of the processing front. The simulation results provide explanations of the main liquid transport mechanisms on the processing front, based on information on the temperature, velocity and pressure fields involved. The results are of fundamental relevance for any process governed by a laser ablation induced front. In Paper IV cutting fronts created by CO2 and fibre lasers in stainless steel at thicknesses between 2 mm and 10 mm have been ‘frozen’ and their geometry has been measured. The resulting three-dimensional shapes have been curve fitted as ninth order polynomials. Various features of the cutting front geometry are discussed, including the lack of correlation of the cut front inclination with either the relevant Brewster angle or the inclination of the striations on the cut edge. In this paper, mathematical descriptions of the cutting fronts are obtained, which can be used as input parameters by any researcher in the field of laser cutting simulations.Paper V investigates the subject of laser piercing. Before any cut is started the laser needs to pierce the material. In this paper the laser piercing process is investigated using a wide range of laser pulse parameters, for stainless steel using a fibre laser. The results reveal the influence of pulse parameters on pierce time and pierced hole diameter. A high speed imaging camera was used to time the penetration event and to study the laser-material interactions involved in drilling the pierced holes. In Paper VI a ‘dynamic’ or ‘moving beam’, laser piercing technique is introduced for processing 15 mm thick stainless steel. One important aspect of laser piercing is the reliability of the process because industrial laser cutting machines are programmed for the minimum reliable pierce time. In this work a comparison was made between a stationary laser and a laser which moves along a circular trajectory with varying processing speeds. High speed imaging was employed during the piercing process to understand melt behavior inside the pierce hole.Throughout this work experimental techniques, including advanced high speed imaging, have been used in conjunction with simulations and theoretical analysis, to provide new knowledge for understanding and improving laser beam cutting and its associated piercing process.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy