SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L4X0:1402 1544 ;pers:(Nilsson Hans)"

Sökning: L4X0:1402 1544 > Nilsson Hans

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Behar, Etienne (författare)
  • Solar Wind Dynamics within The Atmosphere of comet 67P/Churyumov-Gerasimenko
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis, we explore the dynamics of the solar wind as it perme-ates and flows through a tenuous cometary atmosphere, with a focuson the interaction observed at comet 67P/Churyumov–Gerasimenko.Seven comets had already been visited by nine different probes when the European spacecraft Rosetta reached comet Churyumov–Gerasimenko in August 2014. The mission was however the first to orbit its host comet, which it did for a total duration of more than two years, corre-sponding to a large part of the comet’s orbit around the Sun. This en-abled to study how the dynamics of the plasma environment evolvedas the comet itself was transformed from one of the smallest obstaclesto the solar wind in the Solar System when far away from the Sun, toa well-established magnetosphere at perihelion.Most of our efforts tackle the early part of this transformation, when the creation of new-born cometary ions starts to induce significant disturbances to the incident flow. During this stage, a kinetic descrip-tion of the interaction is necessary, as the system of interest cannot be reduced to a hydrodynamic problem. This contrasts with the situation closer to the Sun, where a fluid treatment can be used, at Churyumov–Gerasimenko as well as at previously visited comets.Rosetta was not a mission dedicated to plasma studies, however. It directly translates into a limited spatial coverage of the cometary plasma environment, which by its nature extends over several spatial scales. An approach solely based on the analysis of in-situ data cannot properly address the major questions on the nature and physics of the plasma environment of Churyumov–Gerasimenko. This thesis there-fore largely exploits the experimental–analytical–numerical triad of approaches. In Chapters 3 and 4 we propose simple models of the ion dynamics and of the cometary plasma environment, and these are tested against experimental and numerical data. Used together,they give a global description of the solar wind ion dynamics through the cometary atmosphere, that we explore in the 2-dimensional and 3-dimensional cases (Chapter 5). In Chapter 6, we propose a view onthe interaction and its fluid aspects when closer to the Sun.
  •  
2.
  • Schillings, Audrey (författare)
  • How does O+ outflow vary with solar wind conditions?
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The entire solar system including Earth is enveloped in a region of space where the Sun’s magnetic field dominates, this region is called the heliosphere. Due to this position in the heliosphere, a strong coupling exists between the Sun and our planet. The Sun continuously ejects particles, the solar wind, which is composed mainly of protons, electrons as well as some helium and heavier elements. These high energetic particles then hit the Earth and are partly deflected by the Earth’s magnetosphere (the region around Earth governed by the geomagnetic field). Depending on the strength of the solar wind hitting our planet, the magnetosphere is disturbed and perturbations can be seen down to the lower atmosphere.The upper atmosphere is affected by short wave-length solar radiation that ionise the neutral atoms, this region is referred to as the ionosphere. In the ionosphere, some of the heavier ion populations, such as O+, are heated and accelerated through several processes and flow upward. In the polar regions (polar cap, cusp and plasma mantle) these mechanisms are particularly efficient and when the ions have enough energy to escape the Earth’s gravity, they move outward along open magnetic field lines. These outflowing ions may be lost into interplanetary space.Another aspect that influences O+ ions are disturbed magnetospheric conditions. They correlate with solar active periods, such as coronal holes or the development of solar active regions. From these regions, strong ejections emerge, called coronal mass ejections (CMEs). When these CMEs interact with Earth, they produce a compression of the magnetosphere as well as reconnection between the terrestrial magnetic field lines and the interplanetary magnetic field (IMF) lines, which very often leads to geomagnetic storms. The energy in the solar wind as well as the coupling to the magnetosphere increase during geomagnetic storms and therefore the energy input to the ionosphere. This in turn increases the O+ outflow. In addition, solar wind parameter variations such as the dynamic pressure or the IMF also influence the outflowing ions.Our observations are made with the Cluster mission, a constellation of 4 satellites flying around Earth in the key magnetospheric regions where we usually observe ion outflow. In this thesis, we estimated O+ outflow for different solar wind parameters (IMF, solar wind dynamic pressure) and extreme ultraviolet radiations (EUV) as well as for extreme geomagnetic storms. We found that O+ outflow increases exponentially with enhanced geomagnetic activity (Kp index) and about 2 orders of magnitude during extreme geomagnetic storms compared to quiet conditions. Furthermore, our investigations on solar wind parameters showed that O+ outflow increases for high dynamic pressure and southward IMF, as well as with EUV radiations. Finally, the fate of O+ ions from the plasma mantle were studied based on Cluster observations and simulations. These results confirm that ions observed in the plasma mantle have sufficient energy to be lost in the solar wind.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy