SwePub
Sök i LIBRIS databas

  Utökad sökning

L4X0:1402 1544
 

Sökning: L4X0:1402 1544 > (2015-2019) > (2018) > Wanhainen Christina > Timing and Origin o...

Timing and Origin of Igneous Rocks in the Gällivare area, Northern Sweden

Sarlus, Zimer, 1984- (författare)
Luleå tekniska universitet,Geovetenskap och miljöteknik
Wanhainen, Christina (preses)
Luleå tekniska universitet,Geovetenskap och miljöteknik
Palinkas, Sabina Strmic, Associate professor (opponent)
University of Tromsö, Norway. Department of geosciences
 (creator_code:org_t)
ISBN 9789177901716
Luleå : Luleå University of Technology, 2018
Engelska.
Serie: Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, 1402-1544
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • The Gällivare area is one of Europe’s top mining regions. The area is located in the northern Norrbotten ore district which hosts ore deposits such as the Malmberget underground iron ore mine, the Aitik open pit Cu-Au mine and the currently explored Nautanen Cu-Au deposit. In addition, several small, mineralized bodies are found. These deposits are hosted by volcanic and volcanosedimentary rocks intruded by intrusive rocks. Previous studies of intrusive and volcanic rocks have often been of local scale and restricted to the major deposits, or of regional scale including entire northern Norrbotten. Minor attention has been paid to rocks of the Gällivare area on a semi-regional scale, especially the intrusive rocks. Very few studies have presented radiometric data of the intrusive and volcanic rocks. In addition, the choice of radiometric method or the re-sults have been lacking confidence. A multidisciplinary approach combining structural geology, geochemistry, geochronology and geophysics is commenced to understand the geological history, crustal geometries and geological evolution of the Gällivare area. This forms basis for future exploration of ore deposits. This study presents geochemical, geochronological and Hf-isotope results with the purpose to characterize and classify major intrusive and volcanic rocks, their timing, source magmas and tectonic environment.Petrographical and geochemical investigations reveal that the intrusive rocks range in composition from ultramafic-mafic to felsic. The ultramafic-mafic rocks comprise dominantly gabbroic layered complexes with peridotitic sequences and have tholeiitic to calc-alkaline affinity. The intermediate and felsic intrusive rocks show calc-alkaline to shoshonitic affinity. Volcanic rocks of the Malmberget deposit show alkali to alkali-calcic character. The geochemical character of the intrusive and volcanic rocks favors a continental arc, transitional to extensional setting (late- to post-collisional).Radiometric in situ U-Pb zircon analyses indicate that mafic and felsic intrusive rocks were generated during magmatic episodes at 1.88, 1.80 Ga and 1.78 Ga. Volcanic rocks hosting the Malmberget deposit belong to the 1.88 Ga magmatic episode. Hydrothermal overgrowth rims from the analyzed zircon crystals indicate extensive reworking and high-T metamorphism of the area around 1.81-1.78 Ga.The mafic-intermediate rocks show minor internal variations in Hf-isotopic signature as well as minor variations inbetween the samples indicative of relatively homogenous source regions beneath the Archean basement. The felsic rocks show a wider range in their Hf-isotopic signature suggesting multiple sources with contribution from old Archean crust.It is here suggested that a subduction process active at 1.9 Ga resulted in a volcanic arc system and ex-tensional environments (back-arc environments) leading to mafic, intermediate and felsic magmatism in the Gällivare area at 1.88 Ga. The mafic-intermediate rocks were extracted from a rather homogenous source reservoir. The c. 1.80 Ga and 1.78 Ga intrusive rocks indicate a complex tectonic evolution of the area at that time. The early 1.80 Ga mafic rocks are suggested to have been generated as a result of extensional magmatism related to an east-directed 1.80 Ga subduction system. Subsequent compression followed by uplift, resulted in the generation of 1.78 Ga felsic rocks.

Ämnesord

NATURVETENSKAP  -- Geovetenskap och miljövetenskap -- Geologi (hsv//swe)
NATURAL SCIENCES  -- Earth and Related Environmental Sciences -- Geology (hsv//eng)

Nyckelord

Ore Geology
Malmgeologi

Publikations- och innehållstyp

vet (ämneskategori)
dok (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy