SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L4X0:1651 6206 ;pers:(Kjellén Lena Professor)"

Sökning: L4X0:1651 6206 > Kjellén Lena Professor

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Filipek-Górniok, Beata, 1983- (författare)
  • Glycosaminoglycan Biosynthesis in Zebrafish
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Proteoglycans (PGs) are composed of highly sulfated glycosaminoglycans chains (GAGs) attached to specific core proteins. They are present in extracellular matrices, on the cell surface and in storage granules of hematopoietic cells. Heparan sulfate (HS) and chondroitin/dermatan sulfate (CS/DS) GAGs play indispensable roles in a wide range of biological processes, where they can serve as protein carriers, be involved in growth factor or morphogen gradient formation and act as co-receptors in signaling processes. Protein binding abilities of GAGs are believed to be predominantly dependent on the arrangement of the sugar modifications, sulfation and epimerization, into specific oligosaccharide sequences. Although the process of HS and CS/DS assembly and modification is not fully understood, a set of GAG biosynthetic enzymes have been fairly well studied and several mutations in genes encoding for this Golgi machinery have been linked to human genetic disorders.This thesis focuses on the zebrafish N-deacetylase/N-sulfotransferase gene family, encoding key enzymes in HS chain modification, as well as glycosyltransferases responsible for chondroitin/dermatan sulfate elongation present in zebrafish. Our data illustrates the strict spatio-temporal expression of both the NDST enzymes (Paper I) and CS/DS glycosyltransferases (Paper II) in the developing zebrafish embryo. In Paper III we took advantage of the four preexisting zebrafish mutants with defective GAG biosynthesis. We could demonstrate a relation between HS content and the severity of the pectoral fin defects, and additionally correlate impaired HS biosynthesis with altered chondrocyte intercalation. Interestingly, altered CS biosynthesis resulted in loss of the chondrocyte extracellular matrix. One of the main findings was the demonstration of the ratio between the HS biosynthesis enzyme Extl3 and the Csgalnact1/Csgalnact2 proteins, as a main factor influencing the HS/CS ratio. In Paper IV we used the newly developed CRISPR/Cas9 technique to create a collection of zebrafish mutants with defective GAG biosynthetic machineries. Lack of phenotypes linked to null-mutations of most of the investigated genes is striking in this study.
  •  
2.
  • Namburi, Ramesh Babu, 1981- (författare)
  • Brittlestars Galactosaminoglycans and Tools to Study their Structure
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In all living organisms, biological activities such as proper functioning and co-ordination of different organs will depend on different cells and molecular interactions. In some organisms the loss of functional organs or damage of organs can be lethal, whereas in others a special process called regeneration can retrieve lost organs. The molecular details of regeneration are still not completely understood in many organisms. Echinoderms are close to vertebrates in the evolutionary tree and are well known for their amazing regeneration capacity. So we chose to investigate the molecular processes of regeneration mechanism with an interest towards our favorite groups of molecules, glycosaminoglycans (GAGs). GAGs are linear polysaccharides, expressed on all cell surfaces and extracellular space and are also known to be involved in many cellular activities. We aimed to characterize the GAGs present in Echinodermata species Amphiura filiformis and investigated their role during arm regeneration.In Paper I we characterized the structure and function of GAGs from A. filiformis and identified that A. filiformis contains CS/DS type of GAGs, but no HS. The sulfation degree of these CS/DS is close to the one of heparin, i.e. they are highly sulfated. These chains are able to bind FGF-2 growth factor and induce FGF-2 mediated cell signaling. In Paper II we further characterized these GAGs for their localization and for their role in arm regeneration in A. filiformis. Immuno- and histochemical stainings on arm sections revealed that CS/DS GAGs are localized around the podia, surrounding the water vascular system, and around the muscle tissues. Inhibition of sulfated GAG biosynthesis by chlorate treatment affected the regeneration efficiency of the arms, which may be an indication of the importance of CS/DS structures in A. filiformis arm regeneration. We also characterized some bacterial sulfatases in Paper III and a lyase in Paper IV from human and canine gut symbiotic bacteria. Here we sought to find the substrate specificity and optimal conditions for these enzymes’ activities. Our findings suggest that these polysaccharide lyase and sulfatases can be used as potential tools to characterize different GAG structures and their application could further add knowledge on diseases mechanisms related to host pathogen interactions.   
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy