SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0004 6256 OR L773:1538 3881 ;pers:(Ciceri Simona)"

Sökning: L773:0004 6256 OR L773:1538 3881 > Ciceri Simona

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alsubai, Khalid, et al. (författare)
  • Qatar Exoplanet Survey : Qatar-3b, Qatar-4b, and Qatar-5b
  • 2017
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 153:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of Qatar-3b, Qatar-4b, and Qatar-5b, three new transiting planets identified by the Qatar Exoplanet Survey. The three planets belong to the hot Jupiter family, with orbital periods of P-Q3b = 2.50792 days, P-Q4b = 1.80539 days, and P-Q5b = 2.87923 days. Follow-up spectroscopic observations reveal the masses of the planets to be M-Q3b = 4.31 +/- 0.47 M-J, M-Q4b = 6.10 +/- 0.54 M-J, and M-Q5b = 4.32 +/- 0.18 M-J, while model fits to the transit light curves yield radii of R-Q3b = 1.096 +/- 0.14 RJ, R-Q4b = 1.135 +/- 0.11 R-J, and R-Q5b = 1.107 +/- 0.064 R-J. The host stars are low-mass main sequence stars with masses and radii M-Q3 = 1.145 +/- 0.064 M circle dot, M-Q4 = 0.896 +/- 0.048 M circle dot, M-Q5 = 1.128 +/- 0.056 M circle dot and R-Q3 = 1.272 +/- 0.14 R circle dot, R-Q4 = 0.849 +/- 0.063 R circle dot, and R-Q5 = 1.076 +/- 0.051 R circle dot for Qatar-3, 4, and 5 respectively. The V magnitudes of the three host stars are V-Q3 = 12.88, V-Q4 = 13.60, and V-Q5 = 12.82. All three new planets can be classified as heavy hot Jupiters (M > 4 M-J).
  •  
2.
  • Brahm, R., et al. (författare)
  • HATS-43b, HATS-44b, HATS-45b, and HATS-46b : Four Short-period Transiting Giant Planets in the Neptune-Jupiter Mass Range
  • 2018
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 155:3
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of four short-period extrasolar planets transiting moderately bright stars from photometric measurements of the HATSouth network coupled to additional spectroscopic and photometric follow-up observations. While the planet masses range from 0.26 to 0.90 M-J, the radii are all approximately a Jupiter radii, resulting in a wide range of bulk densities. The orbital period of the planets ranges from 2.7 days to 4.7 days, with HATS-43b having an orbit that appears to be marginally non-circular (e = 0.173 +/- 0.089). HATS-44 is notable for having a high metallicity ([Fe/H]= 0.320 +/- 0.071). The host stars spectral types range from late F to early K, and all of them are moderately bright (13.3 < V < 14.4), allowing the execution of future detailed follow-up observations. HATS-43b and HATS-46b, with expected transmission signals of 2350 ppm and 1500 ppm, respectively, are particularly well suited targets for atmospheric characterization via transmission spectroscopy.
  •  
3.
  • Henning, Th., et al. (författare)
  • HATS-50b through HATS-53b : Four Transiting Hot Jupiters Orbiting G-type Stars Discovered by the HATSouth Survey
  • 2018
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 155:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of four close-in transiting exoplanets (HATS-50b through HATS-53b), discovered using the HATSouth three-continent network of homogeneous and automated telescopes. These new exoplanets belong to the class of hot Jupiters and orbit G-type dwarf stars, with brightness in the range V = 12.5-14.0 mag. While HATS-53 has many physical characteristics similar to the Sun, the other three stars appear to be metal-rich ([Fe/H]= 0.2-0.3), larger, and more massive. Three of the new exoplanets, namely HATS-50b, HATS-51b, and HATS-53b, have low density (HATS-50b: 0.39 +/- 0.10 M-J, 1.130 +/- 0.075 R-J; HATS-51b: 0.768 +/- 0.045 M-J, 1.41 +/- 0.19 R-J; HATS-53b: 0.595 +/- 0.089 M-J, 1.340 +/- 0.056 R-J) and similar orbital periods (3.8297 days, 3.3489 days, 3.8538 days, respectively). Instead, HATS-52b is more dense (mass 2.24. +/- 0.15 M-J and radius 1.382 +/- 0.086 R-J) and has a shorter orbital period (1.3667 days). It also receives an intensive radiation from its parent star and, consequently, presents a high equilibrium temperature (T-eq = 1834 +/- 73 K). HATS-50 shows a marginal additional transit feature consistent with an ultra-short-period hot super Neptune (upper mass limit 0.16 M-J), which will be able to be confirmed with TESS photometry.
  •  
4.
  • Hirao, Yuki, et al. (författare)
  • OGLE-2017-BLG-0406 : Spitzer Microlens Parallax Reveals Saturn-mass Planet Orbiting M-dwarf Host in the Inner Galactic Disk
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 160:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery and analysis of the planetary microlensing event OGLE-2017-BLG-0406, which was observed both from the ground and by the Spitzer satellite in a solar orbit. At high magnification, the anomaly in the light curve was densely observed by ground-based-survey and follow-up groups, and it was found to be explained by a planetary lens with a planet/host mass ratio of q = 7.0 x 10(-4) from the light-curve modeling. The ground-only and Spitzer-only data each provide very strong one-dimensional (1D) constraints on the 2D microlens parallax vector pi(E). When combined, these yield a precise measurement of pi(E) and of the masses of the host M-host = 0.56 +/- 0.07 M-circle dot and planet M-planet = 0.41 +/- 0.05 M-Jup. The system lies at a distance D-L = 5.2 +/- 0.5 kpc from the Sun toward the Galactic bulge, and the host is more likely to be a disk population star according to the kinematics of the lens. The projected separation of the planet from the host is a(perpendicular to) = 3.5 +/- 0.3 au (i.e., just over twice the snow line). The Galactic-disk kinematics are established in part from a precise measurement of the source proper motion based on OGLE-IV data. By contrast, the Gaia proper-motion measurement of the source suffers from a catastrophic 10 sigma error.
  •  
5.
  • Ryu, Y. -H., et al. (författare)
  • OGLE-2016-BLG-1190Lb : The First Spitzer Bulge Planet Lies Near the Planet/Brown-dwarf Boundary
  • 2018
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 155:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of OGLE-2016-BLG-1190Lb, which is likely to be the first Spitzer microlensing planet in the Galactic bulge/ bar, an assignation that can be confirmed by two epochs of high-resolution imaging of the combined source-lens baseline object. The planet's mass, M-p = 13.4 +/- 0.9 M-J, places it right at the deuteriumburning limit, i. e., the conventional boundary between planets and brown dwarfs. Its existence raises the question of whether such objects are really planets (formed within the disks of their hosts) or failed stars (lowmass objects formed by gas fragmentation). This question may ultimately be addressed by comparing disk and bulge/bar planets, which is a goal of the Spitzer microlens program. The host is a G dwarf, M-host = 0.89. +/- 0.07 M-circle dot, and the planet has a semimajor axis a similar to 2.0 au. We use Kepler K2 Campaign 9 microlensing data to break the lens-mass degeneracy that generically impacts parallax solutions from Earth-Spitzer observations alone, which is the first successful application of this approach. The microlensing data, derived primarily from near-continuous, ultradense survey observations from OGLE, MOA, and three KMTNet telescopes, contain more orbital information than for any previous microlensing planet, but not quite enough to accurately specify the full orbit. However, these data do permit the first rigorous test of microlensing orbital-motion measurements, which are typically derived from data taken over < 1% of an orbital period.
  •  
6.
  • Shvartzvald, Yossi, et al. (författare)
  • Spitzer Microlensing Parallax for OGLE-2017-BLG-0896 Reveals a Counter-rotating Low-mass Brown Dwarf
  • 2019
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 157:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The kinematics of isolated brown dwarfs in the Galaxy, beyond the solar neighborhood, is virtually unknown. Microlensing has the potential to probe this hidden population, as it can measure both the mass and five of the six phase-space coordinates (all except the radial velocity) even of a dark isolated lens. However, the measurements of both the microlens-parallax and finite-source effects are needed in order to recover the full information. Here, we combine the Spitzer satellite parallax measurement with the ground-based light curve, which exhibits strong finite-source effects, of event OGLE-2017-BLG-0896. We find two degenerate solutions for the lens (due to the known satellite-parallax degeneracy), which are consistent with each other except for their proper motion. The lens is an isolated brown dwarf with a mass of either 18 +/- 1 M-J or 20 +/- 1 M-J. This is the lowest isolated-object mass measurement to date, only similar to 45% more massive than the theoretical deuterium-fusion boundary at solar metallicity, which is the common definition of a free-floating planet. The brown dwarf is located at either 3.9 +/- 0.1 kpc or 4.1 +/- 0.1 kpc toward the Galactic bulge, but with proper motion in the opposite direction of disk stars, with one solution suggesting it is moving within the Galactic plane. While it is possibly a halo brown dwarf, it might also represent a different, unknown population.
  •  
7.
  • Southworth, John, et al. (författare)
  • Detection of the Atmosphere of the 1.6 M-circle plus Exoplanet GJ 1132 b
  • 2017
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 153:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Detecting the atmospheres of low-mass, low-temperature exoplanets is a high-priority goal on the path to ultimately detecting biosignatures in the atmospheres of habitable exoplanets. High-precision HST observations of several super-Earths with equilibrium temperatures below 1000 K have to date all resulted in featureless transmission spectra, which have been suggested to be due to high-altitude clouds. We report the detection of an atmospheric feature in the atmosphere of a 1.6 M-circle plus transiting exoplanet, GJ 1132 b, with an equilibrium temperature of similar to 600 K and orbiting a nearby M dwarf. We present observations of nine transits of the planet obtained simultaneously in the griz and JHK passbands. We find an average radius of 1.43 +/- 0.16 R-circle plus for the planet, averaged over all the passbands, and a radius of 0.255 +/- 0.023 R-circle dot for the star, both of which are significantly greater than previously found. The planet radius can be decomposed into a surface radius at similar to 1.375 R-circle plus overlaid by atmospheric features that increase the observed radius in the z and K bands. The z-band radius is 4 sigma higher than the continuum, suggesting a strong detection of an atmosphere. We deploy a suite of tests to verify the reliability of the transmission spectrum, which are greatly helped by the existence of repeat observations. The large z-band transit depth indicates strong opacity from H2O and/or CH4 or a hitherto-unconsidered opacity. A surface radius of 1.375 +/- 0.16 R-circle plus allows for a wide range of interior compositions ranging from a nearly Earth-like rocky interior, with similar to 70% silicate and similar to 30% Fe, to a substantially H2O-rich water world.
  •  
8.
  • de Val-Borro, M., et al. (författare)
  • HATS-31B THROUGH HATS-35B : FIVE TRANSITING HOT JUPITERS DISCOVERED BY THE HATSOUTH SURVEY
  • 2016
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 152:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of five new transiting hot-Jupiter planets discovered by the HATSouth survey, HATS-31b through HATS-35b. These planets orbit moderately bright stars with V magnitudes within the range of 11.9-14.4 mag while the planets span a range of masses of. 0.88-1.22 M-J. and have somewhat inflated radii between 1.23 and 1.64 R-J. These planets can be classified as typical hot Jupiters, with HATS-31b and HATS-35b being moderately inflated gas giant planets with radii of 1.64 +/- 0.22 R-J and 1.464(-0.044)(+0.069) R-J, respectively, that can be used to constrain inflation mechanisms. All five systems present a higher Bayesian evidence for a fixed-circular-orbit model than for an eccentric orbit. The orbital periods range from 1.8209993 +/- 0.0000016 day for HATS-35b) to 3.377960 +/- 0.000012 day for HATS-31b. Additionally, HATS-35b orbits a relatively young F star with an age of 2.13 +/- 0.51 Gyr. We discuss the analysis to derive the properties of these systems and compare them in the context of the sample of well-characterized transiting hot Jupiters known to date.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy