SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0012 1797 ;pers:(Berggren PO)"

Sökning: L773:0012 1797 > Berggren PO

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Barker, CJ, et al. (författare)
  • XPR1 Mediates the Pancreatic β-Cell Phosphate Flush
  • 2021
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 70:1, s. 111-118
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucose-stimulated insulin secretion is the hallmark of the pancreatic β-cell, a critical player in the regulation of blood glucose concentration. In 1974, the remarkable observation was made that an efflux of intracellular inorganic phosphate (Pi) accompanied the events of stimulated insulin secretion. The mechanism behind this “phosphate flush,” its association with insulin secretion, and its regulation have since then remained a mystery. We recapitulated the phosphate flush in the MIN6m9 β-cell line and pseudoislets. We demonstrated that knockdown of XPR1, a phosphate transporter present in MIN6m9 cells and pancreatic islets, prevented this flush. Concomitantly, XPR1 silencing led to intracellular Pi accumulation and a potential impact on Ca2+ signaling. XPR1 knockdown slightly blunted first-phase glucose-stimulated insulin secretion in MIN6m9 cells, but had no significant impact on pseudoislet secretion. In keeping with other cell types, basal Pi efflux was stimulated by inositol pyrophosphates, and basal intracellular Pi accumulated following knockdown of inositol hexakisphosphate kinases. However, the glucose-driven phosphate flush occurred despite inositol pyrophosphate depletion. Finally, while it is unlikely that XPR1 directly affects exocytosis, it may protect Ca2+ signaling. Thus, we have revealed XPR1 as the missing mediator of the phosphate flush, shedding light on a 45-year-old mystery.
  •  
3.
  • Brown, H, et al. (författare)
  • Synaptotagmin III isoform is compartmentalized in pancreatic beta-cells and has a functional role in exocytosis
  • 2000
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 49:3, s. 383-391
  • Tidskriftsartikel (refereegranskat)abstract
    • Synaptotagmin is involved in Ca2+-regulated secretion and has been suggested to serve as a general Ca2+ sensor on the membrane of secretory vesicles in neuronal cells. Insulin exocytosis from the pancreatic beta-cell is an example of a Ca2+-dependent secretory process. Previous studies of pancreatic beta-cells were unable to show presence of synaptotagmin I. We now present biochemical and immunohistochemical data showing that synaptotagmin III is present in pancreatic beta-cells as well as in the insulin-secreting cell line HIT-T15 and in rat insulinoma. By subcellular fractionation, we found synaptotagmin III in high-density fractions together with insulin and secretogranin I, indicating colocalization of synaptotagmin III and insulin in secretory granules. We could also show that blockade of synaptotagmin III by a specific antibody inhibited Ca2+-induced changes in beta-cell membrane capacitance, suggesting that synaptotagmin III is part of the functional protein complex regulating beta-cell exocytosis. The synaptotagmin III antibody did not affect the activity of the voltage-gated L-type Ca2+-channel. These findings are compatible with the view that synaptotagmin III, because of its distinct localization in the pancreatic beta-cell, functionally modulates insulin exocytosis. This indicates that synaptotagmin may have a general role in the regulation of exocytosis not only in neuronal cells but also in endocrine cells.
  •  
4.
  •  
5.
  • Chandra, J, et al. (författare)
  • Role of apoptosis in pancreatic beta-cell death in diabetes
  • 2001
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 5050 Suppl 1, s. S44-S47
  • Tidskriftsartikel (refereegranskat)abstract
    • Apoptosis is a physiological form of cell death that occurs during normal development, and critical mediators of this process include caspases, reactive oxygen species, and Ca2+. Excessive apoptosis of the pancreatic beta-cell has been associated with diabetes. Consequently, apoptosis research has focused on how infiltrating macrophages or cytotoxic T-cells might kill pancreatic beta-cells using cytokines or death receptor triggering. Meanwhile, the intracellular events in the target beta-cell have been largely ignored. Elucidation of such targets might help develop improved treatment strategies for diabetes. This article will outline recent developments in apoptosis research, with emphasis on mechanisms that may be relevant to beta-cell death in type 1 and type 2 diabetes. Several of the models proposed in beta-cell killing converge on Ca2+ signaling, indicating that the pancreatic beta-cell may be an ideal system in which to carefully dissect the role of Ca2+ during apoptosis.
  •  
6.
  • Efanov, AM, et al. (författare)
  • The novel imidazoline compound BL11282 potentiates glucose-induced insulin secretion in pancreatic beta-cells in the absence of modulation of K(ATP) channel activity
  • 2001
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 50:4, s. 797-802
  • Tidskriftsartikel (refereegranskat)abstract
    • The insulinotropic activity of the novel imidazoline compound BL11282 was investigated. Intravenous administration of BL11282 (0.3 mg · kg–1 · min–1) to anesthetized rats did not change blood glucose and insulin levels under basal conditions, but produced a higher increase in blood insulin levels and a faster glucose removal from the blood after glucose infusion. Similarly, in isolated Wistar rat pancreatic islets, 0.1–100 μmol/l BL11282 potently stimulated glucose-induced insulin secretion but did not modulate basal insulin secretion. Unlike previously described imidazolines, BL11282 did not block ATP-dependent K+ channels. Furthermore, the compound stimulated insulin secretion in islets depolarized with high concentrations of KCl or permeabilized with electric shock. Insulinotropic activity of BL11282 was dependent on activity of protein kinases A and C. In pancreatic islets from spontaneously diabetic GK rats, the imidazoline compound restored the impaired insulin response to glucose. In conclusion, the imidazoline BL11282 constitutes a new class of insulinotropic compounds that exerts an exclusive glucose-dependent insulinotropic activity in pancreatic islets by stimulating insulin exocytosis.
  •  
7.
  • Efanova, IB, et al. (författare)
  • RX871024 induces Ca2+ mobilization from thapsigargin-sensitive stores in mouse pancreatic beta-cells
  • 1998
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 47:2, s. 211-218
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of RX871024, a compound with an imidazoline structure, on cytoplasmic-free Ca2+ concentration ([Ca2+]i) in mouse pancreatic β-cells were studied. RX871024 modulates [Ca2+]i; by at least two mechanisms. One mechanism involves closure ofATPregulated K+ channels, resulting in membrane depolarization, opening of voltage-gated L-type Ca2+ channels, and a subsequent increase in [Ca2+]i. Another mechanism, reported here for the first time, deals with RX871024-induced mobilization of Ca2+ from nonmitochondrial thapsigargin-sensitive intracellular stores. Reduced glutathione, inhibitors of cytochrome P-450, and monoaminooxidases A and B blocked this Ca2+ mobilization. It is concluded that the mechanism of RX871024-induced Ca2+ mobilization from intracellular stores involves changes in the oxidation/reduction state of the pancreatic β-cell and may be controlled by cytochrome P-450.
  •  
8.
  •  
9.
  • Gromada, J, et al. (författare)
  • ATP-sensitive K+ channel-dependent regulation of glucagon release and electrical actiflty by glucose in wild-type and SUR1(-/-) mouse alpha-cells
  • 2004
  • Ingår i: Diabetes. - 0012-1797. ; 53, s. 181-189
  • Konferensbidrag (refereegranskat)abstract
    • Patch-clamp recordings and glucagon release measurements were combined to determine the role of plasma membrane ATP-sensitive K+ channels (K-ATP channels) in the control of glucagon secretion from mouse pancreatic alpha-cells. In wild-type mouse islets, glucose produced a concentration-dependent (half-maximal inhibitory concentration [IC50] = 2.5 mmol/l) reduction of glucagon release. Maximum inhibition (similar to50%) was attained at glucose concentrations >5 mmol/l. The sulfonylureas tolbutamide (100 mumol/l) and glibenclamide (100 nmol/l) inhibited glucagon secretion to the same extent as a maximally inhibitory concentration of glucose. In mice lacking functional KATP channels (SUR1(-/-)), glucagon secretion in the absence of glucose was lower than that observed in wild-type islets and both glucose (0-20 mmol/l) and the sulfonylureas failed to inhibit glucagon secretion. Membrane potential recordings revealed that a-cells generate action potentials in the absence of glucose. Addition of glucose depolarized the alpha-cell by similar to7 mV and reduced spike height by 30% Application of tolbutamide likewise depolarized the alpha-cell (similar to17 mV) and reduced action potential amplitude (43%). Whereas insulin secretion increased monotonically with increasing external K+ concentrations (threshold 25 mmol/l), glucagon secretion was paradoxically suppressed at intermediate concentrations (5.6-15 mmol/l), and stimulation was first detectable at > 25 mmol/l K+. In alpha-cells isolated from SUR1(-/-) mice, both tolbutamide and glucose failed to produce membrane depolarization. These effects correlated with the presence of a small (0.13 nS) sulfonylurea-sensitive conductance in wild-type but not in SUR1(-/-) a-cells. Recordings of the free cytoplasmic Ca2+ concentration ([Ca2+](i)) revealed that, whereas glucose lowered [Ca2+](i) to the same extent as application of tolbutamide, the Na+ channel blocker tetrodotoxin, or the Ca2+ channel blocker Co2+ in wild-type alpha-cells, the sugar was far less effective on [Ca2+](i) in SUR1(-/-) alpha-cells. We conclude that the K-ATP channel is involved in the control of glucagon secretion by regulating the membrane potential in the alpha-cell in a way reminiscent of that previously documented in insulin-releasing beta-cells. However, because alpha-cells possess a different complement of voltage-gated ion channels involved in action potential generation than the beta-cell, moderate membrane depolarization in alpha-cells is associated with reduced rather than increased electrical activity and secretion.
  •  
10.
  • Gromada, J, et al. (författare)
  • ATP-sensitive K+ channel-dependent regulation of glucagon release and electrical activity by glucose in wild-type and SUR1-/- mouse alpha-cells
  • 2004
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 5353 Suppl 3, s. S181-S189
  • Tidskriftsartikel (refereegranskat)abstract
    • Patch-clamp recordings and glucagon release measurements were combined to determine the role of plasma membrane ATP-sensitive K+ channels (KATP channels) in the control of glucagon secretion from mouse pancreatic α-cells. In wild-type mouse islets, glucose produced a concentration-dependent (half-maximal inhibitory concentration [IC50] = 2.5 mmol/l) reduction of glucagon release. Maximum inhibition (∼50%) was attained at glucose concentrations >5 mmol/l. The sulfonylureas tolbutamide (100 μmol/l) and glibenclamide (100 nmol/l) inhibited glucagon secretion to the same extent as a maximally inhibitory concentration of glucose. In mice lacking functional KATP channels (SUR1−/−), glucagon secretion in the absence of glucose was lower than that observed in wild-type islets and both glucose (0–20 mmol/l) and the sulfonylureas failed to inhibit glucagon secretion. Membrane potential recordings revealed that α-cells generate action potentials in the absence of glucose. Addition of glucose depolarized the α-cell by ∼7 mV and reduced spike height by 30% Application of tolbutamide likewise depolarized the α-cell (∼17 mV) and reduced action potential amplitude (43%). Whereas insulin secretion increased monotonically with increasing external K+ concentrations (threshold 25 mmol/l), glucagon secretion was paradoxically suppressed at intermediate concentrations (5.6–15 mmol/l), and stimulation was first detectable at >25 mmol/l K+. In α-cells isolated from SUR1−/− mice, both tolbutamide and glucose failed to produce membrane depolarization. These effects correlated with the presence of a small (0.13 nS) sulfonylurea-sensitive conductance in wild-type but not in SUR1−/− α-cells. Recordings of the free cytoplasmic Ca2+ concentration ([Ca2+]i) revealed that, whereas glucose lowered [Ca2+]i to the same extent as application of tolbutamide, the Na+ channel blocker tetrodotoxin, or the Ca2+ channel blocker Co2+ in wild-type α-cells, the sugar was far less effective on [Ca2+]i in SUR1−/− α-cells. We conclude that the KATP channel is involved in the control of glucagon secretion by regulating the membrane potential in the α-cell in a way reminiscent of that previously documented in insulin-releasing β-cells. However, because α-cells possess a different complement of voltage-gated ion channels involved in action potential generation than the β-cell, moderate membrane depolarization in α-cells is associated with reduced rather than increased electrical activity and secretion.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy