SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0012 1797 OR L773:1939 327X ;pers:(Krook A)"

Sökning: L773:0012 1797 OR L773:1939 327X > Krook A

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Borg, ML, et al. (författare)
  • Modified UCN2 Peptide Acts as an Insulin Sensitizer in Skeletal Muscle of Obese Mice
  • 2019
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 68:7, s. 1403-1414
  • Tidskriftsartikel (refereegranskat)abstract
    • The neuropeptide urocortin 2 (UCN2) and its receptor corticotropin-releasing hormone receptor 2 (CRHR2) are highly expressed in skeletal muscle and play a role in regulating energy balance and glucose metabolism. We investigated a modified UCN2 peptide as a potential therapeutic agent for the treatment of obesity and insulin resistance, with a specific focus on skeletal muscle. High-fat–fed mice (C57BL/6J) were injected daily with a PEGylated UCN2 peptide (compound A) at 0.3 mg/kg subcutaneously for 14 days. Compound A reduced body weight, food intake, whole-body fat mass, and intramuscular triglycerides compared with vehicle-treated controls. Furthermore, whole-body glucose tolerance was improved by compound A treatment, with increased insulin-stimulated Akt phosphorylation at Ser473 and Thr308 in skeletal muscle, concomitant with increased glucose transport into extensor digitorum longus and gastrocnemius muscle. Mechanistically, this is linked to a direct effect on skeletal muscle because ex vivo exposure of soleus muscle from chow-fed lean mice to compound A increased glucose transport and insulin signaling. Moreover, exposure of GLUT4-Myc–labeled L6 myoblasts to compound A increased GLUT4 trafficking. Our results demonstrate that modified UCN2 peptides may be efficacious in the treatment of type 2 diabetes by acting as an insulin sensitizer in skeletal muscle.
  •  
2.
  • Dollet, L, et al. (författare)
  • Glutamine Regulates Skeletal Muscle Immunometabolism in Type 2 Diabetes
  • 2022
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 71:4, s. 624-636
  • Tidskriftsartikel (refereegranskat)abstract
    • Dysregulation of skeletal muscle metabolism influences whole-body insulin sensitivity and glucose homeostasis. We hypothesized that type 2 diabetes–associated alterations in the plasma metabolome directly contribute to skeletal muscle immunometabolism and the subsequent development of insulin resistance. To this end, we analyzed the plasma and skeletal muscle metabolite profile and identified glutamine as a key amino acid that correlates inversely with BMI and insulin resistance index (HOMA-IR) in men with normal glucose tolerance or type 2 diabetes. Using an in vitro model of human myotubes and an in vivo model of diet-induced obesity and insulin resistance in male mice, we provide evidence that glutamine levels directly influence the inflammatory response of skeletal muscle and regulate the expression of the adaptor protein GRB10, an inhibitor of insulin signaling. Moreover, we demonstrate that a systemic increase in glutamine levels in a mouse model of obesity improves insulin sensitivity and restores glucose homeostasis. We conclude that glutamine supplementation may represent a potential therapeutic strategy to prevent or delay the onset of insulin resistance in obesity by reducing inflammatory markers and promoting skeletal muscle insulin sensitivity.
  •  
3.
  • Glund, S., et al. (författare)
  • Interleukin-6 directly increases glucose metabolism in resting human skeletal muscle
  • 2007
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 56:6, s. 1630-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Interleukin (IL)-6 is a proinflammatory cytokine shown to modify insulin sensitivity. Elevated plasma levels of IL-6 are observed in insulin-resistant states. Interestingly, plasma IL-6 levels also increase during exercise, with skeletal muscle being the predominant source. Thus, IL-6 has also been suggested to promote insulin-mediated glucose utilization. In this study, we determined the direct effects of IL-6 on glucose transport and signal transduction in human skeletal muscle. Skeletal muscle strips were prepared from vastus lateralis biopsies obtained from 22 healthy men. Muscle strips were incubated with or without IL-6 (120 ng/ml). We found that IL-6 increased glucose transport in human skeletal muscle 1.3-fold (P < 0.05). A 30-min pre-exposure to IL-6 did not affect insulin-stimulated glucose transport. IL-6 also increased skeletal muscle glucose incorporation into glycogen, as well as glucose oxidation (1.5- and 1.3-fold, respectively; P < 0.05). IL-6 increased phosphorylation of STAT3 (signal transducer and activator of transcription 3; P < 0.05), AMP-activated protein kinase (P = 0.063), and p38 mitogen-activated protein kinase (P < 0.05) and reduced phosphorylation of S6 ribosomal protein (P < 0.05). In contrast, phosphorylation of protein kinase B/Akt, AS160 (Akt substrate of 160 kDa), and GSK3alpha/beta (glycogen synthase kinase 3alpha/beta) as well as insulin receptor substrate 1-associated phosphatidylinositol 3-kinase activity remained unaltered. In conclusion, acute IL-6 exposure increases glucose metabolism in resting human skeletal muscle. Insulin-stimulated glucose transport and insulin signaling were unchanged after IL-6 exposure.
  •  
4.
  • Jiang, LQ, et al. (författare)
  • Altered response of skeletal muscle to IL-6 in type 2 diabetic patients
  • 2013
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 62:2, s. 355-361
  • Tidskriftsartikel (refereegranskat)abstract
    • Interleukin-6 (IL-6) has a dual role in modulating insulin sensitivity, with evidence for this cytokine as both an enhancer and inhibitor of insulin action. We determined the effect of IL-6 exposure on glucose and lipid metabolism in cultured myotubes established from people with normal glucose tolerance or type 2 diabetes. Acute IL-6 exposure increased glycogen synthesis, glucose uptake, and signal transducer and activator of transcription 3 (STAT3) phosphorylation in cultured myotubes from normal glucose tolerant subjects. However, in type 2 diabetic patients, IL-6 was without effect on glucose metabolism and STAT3 signaling, concomitant with increased suppressor of cytokine signaling 3 (SOCS3) expression. IL-6 increased fatty acid oxidation in myotubes from type 2 diabetic and normal glucose tolerant subjects. Expression of IL-6, IL-6 receptor (IL-6R), or glycoprotein 130, as well as IL-6 secretion, was unaltered between cultured myotubes from normal glucose tolerant or type 2 diabetic subjects. Circulating serum IL-6 concentration was unaltered between normal glucose tolerant and type 2 diabetic subjects. In summary, skeletal muscle cells from type 2 diabetic patients display selective IL-6 resistance for glucose rather than lipid metabolism. In conclusion, IL-6 appears to play a differential role in regulating metabolism in type 2 diabetic patients compared with normal glucose tolerant subjects.
  •  
5.
  • Karlsson, HKR, et al. (författare)
  • Insulin-stimulated phosphorylation of the Akt substrate AS160 is impaired in skeletal muscle of type 2 diabetic subjects
  • 2005
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 54:6, s. 1692-1697
  • Tidskriftsartikel (refereegranskat)abstract
    • AS160 is a newly described substrate for the protein kinase Akt that links insulin signaling and GLUT4 trafficking. In this study, we determined the expression of and in vivo insulin action on AS160 in human skeletal muscle. In addition, we compared the effect of physiological hyperinsulinemia on AS160 phosphorylation in 10 lean−to−moderately obese type 2 diabetic and 9 healthy subjects. Insulin infusion increased the phosphorylation of several proteins reacting with a phospho-Akt substrate antibody. We focused on AS160, as this Akt substrate has been linked to glucose transport. A 160-kDa phosphorylated protein was identified as AS160 by immunoblot analysis with an AS160-specific antibody. Physiological hyperinsulinemia increased AS160 phosphorylation 2.9-fold in skeletal muscle of control subjects (P &lt; 0.001). Insulin-stimulated AS160 phosphorylation was reduced 39% (P &lt; 0.05) in type 2 diabetic patients. AS160 protein expression was similar in type 2 diabetic and control subjects. Impaired AS160 phosphorylation was related to aberrant Akt signaling; insulin action on Akt Ser473 phosphorylation was not significantly reduced in type 2 diabetic compared with control subjects, whereas Thr308 phosphorylation was impaired 51% (P &lt; 0.05). In conclusion, physiological hyperinsulinemia increases AS160 phosphorylation in human skeletal muscle. Moreover, defects in insulin action on AS160 may impair GLUT4 trafficking in type 2 diabetes.
  •  
6.
  • Karlsson, HKR, et al. (författare)
  • Relationship between serum amyloid A level and Tanis/SelS mRNA expression in skeletal muscle and adipose tissue from healthy and type 2 diabetic subjects
  • 2004
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 53:6, s. 1424-1428
  • Tidskriftsartikel (refereegranskat)abstract
    • Tanis is a recently described protein reported to be a putative receptor for serum amyloid A and found to be dysregulated with diabetes in the Israeli sand rat Psamommys obesus. Tanis has also been identified as a selenoprotein, one of the first two identified membrane selenoproteins. We determined mRNA expression of the human homologue of Tanis, SelS/AD-015, in skeletal muscle and adipose tissue biopsies obtained from 10 type 2 diabetic patients and 11 age- and weight-matched healthy subjects. Expression of Tanis/SelS mRNA in skeletal muscle and adipose tissue biopsies was similar between diabetic and control subjects. A subset of subjects underwent a euglycemic-hyperinsulinemic clamp, and adipose tissue expression of Tanis/SelS was determined after in vivo insulin stimulation. Adipose tissue Tanis/SelS mRNA expression was unchanged after insulin infusion in control subjects, whereas Tanis/SelS mRNA increased in seven of eight subjects following insulin stimulation in diabetic subjects. Skeletal muscle and adipose tissue Tanis/SelS mRNA expression were positively correlated with plasma serum amyloid A. In conclusion, there is a strong trend toward upregulation of Tanis/SelS following insulin infusion in adipose tissue from type 2 diabetic subjects. Moreover, the positive relationship between Tanis mRNA and the acute-phase protein serum amyloid A suggests an interaction between innate immune system responses and Tanis expression in muscle and adipose tissue.
  •  
7.
  • Krook, A, et al. (författare)
  • Characterization of signal transduction and glucose transport in skeletal muscle from type 2 diabetic patients
  • 2000
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 49:2, s. 284-292
  • Tidskriftsartikel (refereegranskat)abstract
    • We characterized metabolic and mitogenic signaling pathways in isolated skeletal muscle from well-matched type 2 diabetic and control subjects. Time course studies of the insulin receptor, insulin receptor substrate (IRS)-1/2, and phosphatidylinositol (PI) 3-kinase revealed that signal transduction through this pathway was engaged between 4 and 40 min. Insulin-stimulated (0.6-60 nmol/l) tyrosine phosphorylation of the insulin receptor beta-subunit, mitogen-activated protein (MAP) kinase phosphorylation, and glycogen synthase activity were not altered in type 2 diabetic subjects. In contrast, insulin-stimulated tyrosine phosphorylation of IRS-1 and anti-phosphotyrosine-associated PI 3-kinase activity were reduced 40-55% in type 2 diabetic subjects at high insulin concentrations (2.4 and 60 nmol/l, respectively). Impaired glucose transport activity was noted at all insulin concentrations (0.6-60 nmol/l). Aberrant protein expression cannot account for these insulin-signaling defects because expression of insulin receptor, IRS-1, IRS-2, MAP kinase, or glycogen synthase was similar between type 2 diabetic and control subjects. In skeletal muscle from type 2 diabetic subjects, IRS-1 phosphorylation, PI 3-kinase activity, and glucose transport activity were impaired, whereas insulin receptor tyrosine phosphorylation, MAP kinase phosphorylation, and glycogen synthase activity were normal. Impaired insulin signal transduction in skeletal muscle from type 2 diabetic patients may partly account for reduced insulin-stimulated glucose transport; however, additional defects are likely to play a role.
  •  
8.
  • Krook, A, et al. (författare)
  • Improved glucose tolerance restores insulin-stimulated Akt kinase activity and glucose transport in skeletal muscle from diabetic Goto-Kakizaki rats
  • 1997
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 46:12, s. 2110-2114
  • Tidskriftsartikel (refereegranskat)abstract
    • The serine/threonine kinase Akt (protein kinase B [PKB] or related to A and C protein kinase [RAC] has recently been implicated to play a role in the signaling pathway to glucose transport. However, little is known concerning the regulation of Akt activity in insulinsensitive tissues such as skeletal muscle. To explore the role of hyperglycemia on Akt kinase activity in skeletal muscle, normal Wistar rats or Goto-Kakizaki (GK) diabetic rats were treated with phlorizin. Phlorizin treatment normalized fasting blood glucose and significantly improved glucose tolerance (P &lt; 0.001) in GK rats, whereas in Wistar rats, the compound had no effect on glucose homeostasis. In soleus muscle from GK rats, maximal insulin-stimulated (120 nmol/l) Akt kinase activity was reduced by 68% (P &lt; 0.01) and glucose transport was decreased by 39% (P &lt; 0.05), compared with Wistar rats. Importantly, the defects at the level of Akt kinase and glucose transport were completely restored by phlorizin treatment. There was no significant difference in Akt kinase protein expression among the three groups. At a submaximal insulin concentration (2.4 nmol/l), activity of Akt kinase and glucose transport were unaltered. In conclusion, improved glucose tolerance in diabetic GK rats by phlorizin treatment fully restored insulin-stimulated activity of Akt kinase and glucose transport. Thus, hyperglycemia may directly contribute to the development of muscle insulin resistance through alterations in insulin action on Akt kinase and glucose transport.
  •  
9.
  • Krook, A, et al. (författare)
  • Uncoupling protein 3 is reduced in skeletal muscle of NIDDM patients
  • 1998
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 47:9, s. 1528-1531
  • Tidskriftsartikel (refereegranskat)abstract
    • Two recently described proteins in the mitochondrial uncoupling protein (UCP) family, UCP-2 and UCP-3, have been linked to phenotypes of obesity and NIDDM. We determined the mRNA levels of UCP-2 and UCP-3 in skeletal muscle of NIDDM patients and of healthy control subjects. No difference in the mRNA levels or in the protein expression of UCP-2 was observed between the two groups. In contrast, mRNA levels of UCP-3 were significantly reduced in skeletal muscle of NIDDM patients compared with control subjects. In the NIDDM patients, a positive correlation between UCP-3 expression and whole-body insulin-mediated glucose utilization rate was also noted. These results suggest that UCP-3 regulation may be altered in states of insulin resistance.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy