SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0012 9658 OR L773:1939 9170 ;lar1:(su)"

Sökning: L773:0012 9658 OR L773:1939 9170 > Stockholms universitet

  • Resultat 1-10 av 42
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergvall, Ulrika Alm, et al. (författare)
  • Plant secondary compounds and the frequency of food types affect food choice by mammalian herbivores
  • 2005
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 86:9, s. 2450-2460
  • Tidskriftsartikel (refereegranskat)abstract
    • We have investigated food choice in individual fallow deer (Dama dama) encountering different relative frequencies of food types in the form of bowls containing pellets with either high or low concentrations of hydrolyzable tannin. We performed two similar experiments, one with large and one with small differences in tannic acid concentration. With small differences in tannic acid concentration, the ratio of the consumption per low- and high-tannin bowl was independent of frequency of occurrence, but with large differences in tannic acid concentration, we found frequency-dependent food choice. The deer ate proportionally less from high-tannin bowls if these occurred at low relative frequency. Variation between frequency treatments in the average order of encounter of bowl types might have produced this effect, because we found that the deer left a high-tannin bowl more quickly if they had switched to it from a low-tannin bowl. We argue that the perceived contrast between the tastes of different food types can play a role for food choice by mammalian herbivores.
  •  
2.
  • Cardoso Pereira, Cássio, et al. (författare)
  • Subtle structures with not-so-subtle functions : A data set of arthropod constructs and their host plants
  • 2022
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 103:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The construction of shelters on plants by arthropods might influence other organisms via changes in colonization, community richness, species composition, and functionality. Arthropods, including beetles, caterpillars, sawflies, spiders, and wasps often interact with host plants via the construction of shelters, building a variety of structures such as leaf ties, tents, rolls, and bags; leaf and stem galls, and hollowed out stems. Such constructs might have both an adaptive value in terms of protection (i.e., serve as shelters) but may also exert a strong influence on terrestrial community diversity in the engineered and neighboring hosts via colonization by secondary occupants. Although different traits of the host plant (e.g., physical, chemical, and architectural features) may affect the potential for ecosystem engineering by insects, such effects have been, to a certain degree, overlooked. Further analyses of how plant traits affect the occurrence of shelters may therefore enrich our understanding of the organizing principles of plant-based communities. This data set includes more than 1000 unique records of ecosystem engineering by arthropods, in the form of structures built on plants. All records have been published in the literature, and span both natural structures (91% of the records) and structures artificially created by researchers (9% of the records). The data were gathered between 1932 and 2021, across more than 50 countries and several ecosystems, ranging from polar to tropical zones. In addition to data on host plants and engineers, we aggregated data on the type of constructs and the identity of inquilines using these structures. This data set highlights the importance of these subtle structures for the organization of terrestrial arthropod communities, enabling hypotheses testing in ecological studies addressing ecosystem engineering and facilitation mediated by constructs. There are no copyright restrictions and please cite this paper when using the data in publications.
  •  
3.
  • Christiansen, Ditte M., 1990-, et al. (författare)
  • High-resolution data are necessary to understand the effects of climate on plant population dynamics of a forest herb
  • 2024
  • Ingår i: Ecology. - 0012-9658 .- 1939-9170. ; 105:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate is assumed to strongly influence species distribution and abundance. Although the performance of many organisms is influenced by the climate in their immediate proximity, the climate data used to model their distributions often have a coarse spatial resolution. This is problematic because the local climate experienced by individuals might deviate substantially from the regional average. This problem is likely to be particularly important for sessile organisms like plants and in environments where small-scale variation in climate is large. To quantify the effect of local temperature on vital rates and population growth rates, we used temperature values measured at the local scale (in situ logger measures) and integral projection models with demographic data from 37 populations of the forest herb Lathyrus vernus across a wide latitudinal gradient in Sweden. To assess how the spatial resolution of temperature data influences assessments of climate effects, we compared effects from models using local data with models using regionally aggregated temperature data at several spatial resolutions (≥1 km). Using local temperature data, we found that spring frost reduced the asymptotic population growth rate in the first of two annual transitions and influenced survival in both transitions. Only one of the four regional estimates showed a similar negative effect of spring frost on population growth rate. Our results for a perennial forest herb show that analyses using regionally aggregated data often fail to identify the effects of climate on population dynamics. This emphasizes the importance of using organism-relevant estimates of climate when examining effects on individual performance and population dynamics, as well as when modeling species distributions. For sessile organisms that experience the environment over small spatial scales, this will require climate data at high spatial resolutions. 
  •  
4.
  • Dahlgren, Johan P., et al. (författare)
  • Nonlinear relationships between vital rates and state variables in demographic models
  • 2011
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 92:5, s. 1181-1187
  • Tidskriftsartikel (refereegranskat)abstract
    • To accurately estimate population dynamics and viability, structured population models account for among-individual differences in demographic parameters that are related to individual state. In the widely used matrix models, such differences are incorporated in terms of discrete state categories, whereas integral projection models (IPMs) use continuous state variables to avoid artificial classes. In IPMs, and sometimes also in matrix models, parameterization is based on regressions that do not always model nonlinear relationships between demographic parameters and state variables. We stress the importance of testing for nonlinearity and propose using restricted cubic splines in order to allow for a wide variety of relationships in regressions and demographic models. For the plant Borderea pyrenaica, we found that vital rate relationships with size and age were nonlinear and that the parameterization method had large effects on predicted population growth rates, lambda (linear IPM, 0.95; nonlinear IPMs, 1.00; matrix model, 0.96). Our results suggest that restricted cubic spline models are more reliable than linear or polynomial models. Because even weak nonlinearity in relationships between vital rates and state variables can have large effects on model predictions, we suggest that restricted cubic regression splines should be considered for parameterizing models of population dynamics whenever linearity cannot be assumed.
  •  
5.
  • Dahlgren, Johan P., et al. (författare)
  • The demography of climate-driven and density-regulated population dynamics in a perennial plant
  • 2016
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 97:4, s. 899-907
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying the internal and external drivers of population dynamics is a key objective in ecology, currently accentuated by the need to forecast the effects of climate change on species distributions and abundances. The interplay between environmental and density effects is one particularly important aspect of such forecasts. We examined the simultaneous impact of climate and intraspecific density on vital rates of the dwarf shrub Fumana procumbens over 20 yr, using generalized additive mixed models. We then analyzed effects on population dynamics using integral projection models. The population projection models accurately captured observed fluctuations in population size. Our analyses suggested the population was intrinsically regulated but with annual fluctuations in response to variation in weather. Simulations showed that implicitly assuming variation in demographic rates to be driven solely by the environment can overestimate extinction risks if there is density dependence. We conclude that density regulation can dampen effects of climate change on Fumana population size, and discuss the need to quantify density dependence in predictions of population responses to environmental changes.
  •  
6.
  • Donadi, S., et al. (författare)
  • Cross-habitat interactions among bivalve species control community structure on intertidal flats
  • 2013
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 94:2, s. 489-498
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing evidence shows that spatial interactions between sedentary organisms can structure communities and promote landscape complexity in many ecosystems. Here we tested the hypothesis that reef-forming mussels (Mytilus edulis L.), a dominant intertidal ecosystem engineer in the Wadden Sea, promote abundances of the burrowing bivalve Cerastoderma edule L. (cockle) in neighboring habitats at relatively long distances coastward from mussel beds. Field surveys within and around three mussel beds showed a peak in cockle densities at 50–100 m toward the coast from the mussel bed, while cockle abundances elsewhere in the study area were very low. Field transplantation of cockles showed higher survival of young cockles (2–3 years old) and increased spat fall coastward of the mussel bed compared to within the bed and to areas without mussels, whereas growth decreased within and coastward of the mussel bed. Our measurements suggest that the observed spatial patterns in cockle numbers resulted from (1) inhibition effects by the mussels close to the beds due to preemptive algal depletion and deteriorated sediment conditions and (2) facilitation effects by the mussels farther away from the beds due to reduction of wave energy. Our results imply that these spatial, scale-dependent interactions between reef-forming ecosystem engineers and surrounding communities of sedentary benthic organisms can be an important determinant of the large-scale community structure in intertidal ecosystems. Understanding this interplay between neighboring communities of sedentary species is therefore essential for effective conservation and restoration of soft-bottom intertidal communities.
  •  
7.
  • Donadi, Serena, et al. (författare)
  • Density-dependent positive feedbacks buffer aquatic plants from interactive effects of eutrophication and predator loss
  • 2018
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 99:11, s. 2515-2524
  • Tidskriftsartikel (refereegranskat)abstract
    • Self-facilitation allows populations to persist under disturbance by ameliorating experienced stress. In coastal ecosystems, eutrophication and declines of large predatory fish are two common disturbances that can synergistically impact habitat-forming plants by benefitting ephemeral algae. In theory, density-dependent intraspecific plant facilitation could weaken such effects by ameliorating the amount of experienced stress. Here, we tested whether and how shoot density of a common aquatic plant (Myriophyllum spicatum) alters the response of individual plants to eutrophication and exclusion of large predatory fish, using a 12-week cage experiment in the field. Results showed that high plant density benefitted individual plant performance, but only when the two stressors were combined. Epiphytic algal biomass per plant more than doubled in cages that excluded large predatory fish, indicative of a trophic cascade. Moreover, in this treatment, individual shoot biomass, as well as number of branches, increased with density when nutrients were added, but decreased with density at ambient nutrient levels. In contrast, in open cages that large predatory fish could access, epiphytic algal biomass was low and individual plant biomass and number of branches were unaffected by plant density and eutrophication. Plant performance generally decreased under fertilization, suggesting stressful conditions. Together, these results suggest that intraspecific plant facilitation occurred only when large fish exclusion (causing high epiphyte load) was accompanied by fertilization, and that intraspecific competition instead prevailed when no nutrients were added. As coastal ecosystems are increasingly exposed to multiple and often interacting stressors such as eutrophication and declines of large predatory fish, maintaining high plant density is important for ecosystem-based management.
  •  
8.
  •  
9.
  • Ehrlén, Johan, et al. (författare)
  • Flowering schedule in a perennial plant; life-history trade-offs, seed predation, and total offspring fitness
  • 2015
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 96:8, s. 2280-2288
  • Tidskriftsartikel (refereegranskat)abstract
    • Optimal timing of reproduction within a season may be influenced by several abiotic and biotic factors. These factors sometimes affect different components of fitness, making assessments of net selection difficult. We used estimates of offspring fitness to examine how pre-dispersal seed predation influences selection on flowering schedule in an herb with a bimodal flowering pattern, Actaea spicata. Within individuals, seeds from flowers on early terminal inflorescences had a higher germination rate and produced larger seedlings than seeds from flowers on late basal inflorescences. Reproductive value, estimated using demographic integral projection models and accounting for size-dependent differences in future performance, was two times higher for intact seeds from early flowers than for seeds from late flowers. Fruits from late flowers were, however, much more likely to escape seed predation than fruits from early flowers. Reproductive values of early and late flowers balanced at a predation intensity of 63%. Across 15 natural populations, the strength of selection for allocation to late flowers was positively correlated with mean seed predation intensity. Our results suggest that the optimal shape of the flowering schedule, in terms of the allocation between early and late flowers, is determined by the trade-off between offspring number and quality, and that variation in antagonistic interactions among populations influences the balancing of this trade-off. At the same time they illustrate that phenotypic selection analyses that fail to account for differences in offspring fitness might be misleading.
  •  
10.
  • Ehrlén, Johan, 1956-, et al. (författare)
  • Maladaptive plastic responses of flowering time to geothermal heating
  • 2023
  • Ingår i: Ecology. - 0012-9658 .- 1939-9170. ; 104:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Phenotypic plasticity might increase fitness if the conditions under which it evolved remain unaltered, but becomes maladaptive if the environment no longer provides reliable cues for subsequent conditions. In seasonal environments, timing of reproduction can respond plastically to spring temperature, maximizing the benefits of a long season while minimizing the exposure to unfavorable cold temperatures. However, if the relationship between early spring temperatures and later conditions changes, the optimal response might change. In geothermally heated ecosystems, the plastic response of flowering time to springtime soil temperature that has evolved in unheated areas is likely to be non-optimal, because soil temperatures are higher and decoupled from air temperatures in heated areas. We therefore expect natural selection to favor a lower plasticity and a delayed flowering in these areas. Using observational data along a natural geothermal warming gradient, we tested the hypothesis that selection on flowering time depends on soil temperature and favors later flowering on warmer soils in the perennial Cerastium fontanum. In both study years, plants growing in warmer soils began flowering earlier than plants growing in colder soils, suggesting that first flowering date (FFD) responds plastically to soil temperature. In one of the two study years, selection favored earlier flowering in colder soils but later flowering in warmer soils, suggesting that the current level of plastic advance of FFD on warmer soils may be maladaptive in some years. Our results illustrate the advantages of using natural experiments, such as geothermal ecosystems, to examine selection in environments that recently have undergone major changes. Such knowledge is essential to understand and predict both ecological and evolutionary responses to climate warming. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 42

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy