SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0012 9658 OR L773:1939 9170 ;pers:(Karlsson Jan)"

Sökning: L773:0012 9658 OR L773:1939 9170 > Karlsson Jan

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ask, Jenny, 1976-, et al. (författare)
  • Whole-lake estimates of carbon flux through algae and bacteria in benthic and pelagic habitats of clear-water lakes
  • 2009
  • Ingår i: Ecology. - Washington, DC, USA : Ecological Society of America. - 0012-9658 .- 1939-9170. ; 90:7, s. 1923-1932
  • Tidskriftsartikel (refereegranskat)abstract
    • This study quantified new biomass production of algae and bacteria in both benthic and pelagic habitats of clear-water lakes to contrast how carbon from the atmosphere and terrestrial sources regulates whole-lake metabolism. We studied four small unproductive lakes in subarctic northern Sweden during one summer season. The production of new biomass in both benthic and pelagic habitats was calculated as the sum of autotrophic production by algae and heterotrophic production by bacteria using allochthonous organic carbon (OC). Whole-lake production of new biomass was dominated by the benthic habitat (86% +/- 4% [mean +/- SD]) and by primary production (77% +/- 9%). Still, heterotrophic bacteria fueled by allochthonous OC constituted a significant portion of the new biomass production in both benthic (19% +/- 11%) and pelagic habitats (51% +/- 24%). In addition, overall net production (primary production minus respiration) was close to zero in the benthic habitats but highly negative (-163 +/- 81 mg C.m(-2).d(-1)) in pelagic regions of all lakes. We conclude (1) that allochthonous OC supported a significant part of total production of new biomass in both pelagic and benthic habitats, (2) that benthic habitats dominated the whole-lake production of new biomass, and (3) that respiration and net CO2 production dominated the carbon flux of the pelagic habitats and biomass production dominated the benthic carbon flux. Taken together, these findings suggest that previous investigations have greatly underestimated the productivity of clear-water lakes when benthic autotrophic production and metabolism of allochthonous OC have not been measured.
  •  
2.
  • Karlsson, Jan, et al. (författare)
  • Similar relationships between pelagic primary and bacterial production in clearwater and humic lakes
  • 2002
  • Ingår i: Ecology. - 0012-9658 .- 1939-9170. ; 83:10, s. 2902-2910
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined the relationship between planktonic primary production (PP) and bacterial production (BP) in 16 subarctic lakes along an altitude gradient extending from colored coniferous forest lakes to clearwater high alpine lakes. We tested the hypothesis that there was a shift from low to high PP:BP ratios along this gradient. The clearwater alpine lakes had low PP:BP ratios, generally well below 1.0, while the highest ratios were-found in the forest lakes. In contradiction to our hypothesis, the pelagic systems of the clearwater lakes were thus dominated by bacterial energy mobilization from external carbon sources. In this respect the alpine lakes were similar to highly humic lakes. We suggest that the relationship between C, N, and P plays a critical role in determining the PP:BP ratio, and that the N:P ratio in particular can be critical for development of PP or BP dominance in the pelagic systems of unproductive lakes.
  •  
3.
  • Karlsson, Jan, et al. (författare)
  • Terrestrial organic matter input suppresses biomass production in lake ecosystems
  • 2015
  • Ingår i: Ecology. - : Ecological Society of America. - 0012-9658 .- 1939-9170. ; 96:11, s. 2870-2876
  • Tidskriftsartikel (refereegranskat)abstract
    • Terrestrial ecosystems export large amounts of organic carbon (t-OC) but the net effect of this OC on the productivity of recipient aquatic ecosystems is largely unknown. In this study of boreal lakes, we show that the relative contribution of t-OC to individual top consumer (fish) biomass production, and to most of their potential prey organisms, increased with the concentration of dissolved organic carbon (DOC; dominated by t-OC sources) in water. However, the biomass and production of top consumers decreased with increasing concentration of DOC, despite their substantial use (up to 60%) of t-OC. Thus, the results suggest that although t-OC supports individual consumer growth in lakes to a large extent, t-OC input suppresses rather than subsidizes population biomass production.
  •  
4.
  • Vasconcelos, Francisco Rivera, et al. (författare)
  • Asymmetrical competition between aquatic primary producers in a warmer and browner world
  • 2016
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 97:10, s. 2580-2592
  • Tidskriftsartikel (refereegranskat)abstract
    • In shallow lakes, pelagic and benthic producers engage in spatially asymmetrical resource competition. Pelagic producers intercept the flux of light to the benthic habitat and benthic producers intercept the flux of sediment-derived nutrients to the pelagic habitat. In boreal and subarctic regions, climate change is affecting this interaction both directly through warming and indirectly through increased loading with colored dissolved organic matter (cDOM) from the catchment (brownification). We use a dynamical ecosystem model to explore the consequences of these changing environmental conditions for lake primary production and compare model predictions with the results of an experiment in which we manipulated water temperature and cDOM supply in a 2x2 factorial design. The experiment was performed in field mesocosms large enough to harbor reproducing fish populations and was run over an entire growing season. In agreement with model predictions, benthic algal production and biomass declined and pelagic algal production and biomass increased with browning. Pelagic nutrient concentrations diverged over time between low and high cDOM treatments, suggesting that browning alleviated pelagic algal nutrient limitation by shading benthic competitors and preventing them from intercepting the release of nutrients from the sediment. Warming considerably reduced benthic and pelagic algal production as well as pelagic algalbiomass and total phosphorus. The warming results are only in partial accordance with model expectations, but can be explained by an indirectly inferred, positive response of macrophyte production (which was not included in the model) to warming. Our study suggests that lake ecosystem responses to climate change are mediated by cross-habitat feedbacks between benthic and pelagic producers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy