SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0014 4886 ;pers:(Kokaia Merab)"

Sökning: L773:0014 4886 > Kokaia Merab

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Elmer, Eskil, et al. (författare)
  • Suppressed kindling epileptogenesis and perturbed BDNF and TrkB gene regulation in NT-3 mutant mice
  • 1997
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886. ; 145:1, s. 93-103
  • Tidskriftsartikel (refereegranskat)abstract
    • In the kindling model of epilepsy, repeated electrical stimulations lead to progressive and permanent intensification of seizure activity. We find that the development of amygdala kindling is markedly retarded in mice heterozygous for a deletion of the neurotrophin-3 (NT-3) gene (NT-3+/- mice). These mice did not reach the fully kindled state (3rd grade 5 seizure) until after 28 +/- 4 days of stimulation compared to 17 +/- 2 days in the wild-type animals. The deficit in the NT-3+/- mice reflected dampening of the progression from focal to generalized seizures. The number of stimulations required to evoke focal (grade 1 and 2) seizures did not differ between the groups, but the NT-3 mutants spent a considerably longer period of time (13 +/- 3 days) than wild-type mice (2 +/- 1 days) in grade 2 seizures. As assessed by test stimulation 4-12 weeks after the 10th grade 5 seizure, kindling was maintained in the NT-3 mutants. In situ hybridization showed 30% reduction of basal NT-3 mRNA levels and lack of upregulation of TrkC mRNA expression at 2 h after a generalized seizure in dentate granule cells of the NT-3+/- mice, whereas the seizure-evoked increase in brain-derived neurotrophic factor (BDNF) and TrkB mRNA levels was enhanced. These results indicate that endogenous NT-3 levels can influence the rate of epileptogenesis, and suggest a link between NT-3 and BDNF gene regulation in dentate granule cells.
  •  
2.
  • Kanter Schlifke, Irene, et al. (författare)
  • GDNF released from encapsulated cells suppresses seizure activity in the epileptic hippocampus.
  • 2009
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886. ; 216, s. 413-419
  • Tidskriftsartikel (refereegranskat)abstract
    • To date, a variety of pharmacological treatments exists for patients suffering epilepsy, but systemically administered drugs offer only symptomatic relief and often cause unwanted side effects. Moreover, available drugs are not effective in one third of the patients. Thus, more local and more effective treatment strategies need to be developed. Gene therapy-based expression of endogenous anti-epileptic agents represents a novel approach that could interfere with the disease process and result in stable and long-term suppression of seizures in epilepsy patients. We have reported earlier that direct in vivo viral vector-mediated overexpression of the glial cell line-derived neurotrophic factor (GDNF) in the rat hippocampus suppressed seizures in different animal models of epilepsy. Here we explored whether transplantation of encapsulated cells that release GDNF in the hippocampus could also exert a seizure-suppressant effect. Such ex vivo gene therapy approach represents a novel, more clinically safe approach, since the treatment could be terminated by retrieving the transplants from the brain. We demonstrate here that encapsulated cells, which are genetically modified to produce and release GDNF, can suppress recurrent generalized seizures when implanted into the hippocampus of kindled rats.
  •  
3.
  • Kokaia, Merab, et al. (författare)
  • Seizure development and noradrenaline release in kindling epilepsy after noradrenergic reinnervation of the subcortically deafferented hippocampus by superior cervical ganglion or fetal locus coeruleus grafts
  • 1994
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886. ; 130:2, s. 351-361
  • Tidskriftsartikel (refereegranskat)abstract
    • Solid pieces of fetal locus coeruleus (LC) or superior cervical ganglion (SCG) were placed into a fimbria-fornix lesion cavity in 6-hydroxydopamine-treated, noradrenaline (NA)-denervated rats. Six to 8 months later, all animals were subjected to electrical kindling stimulations in the hippocampus until they had reached the fully kindled state. Nongrafted lesioned animals showed markedly increased kindling rate which was partly attenuated by LC but not SCG grafts. In both LC- and SCG-grafted animals, dopamine beta-hydroxylase immunocytochemistry demonstrated a high density of graft-derived noradrenergic fibers in the dorsal hippocampus, whereas reinnervation of the ventral hippocampus was much more sparse. Subregional distribution of these fibers within the hippocampus was different in the two grafted groups. Both grafts partly restored basal extracellular NA levels in the hippocampus and reacted to generalized seizures by a significant (two- to threefold) increase of NA release, as measured by intracerebral microdialysis. Our data indicate (i) that seizure activity can regulate transmitter release from noradrenergic neurons in both LC and SCG grafts, (ii) that only fetal LC grafts retard seizure development in kindling, and (iii) that the inability of SCG implants to influence kindling epileptogenesis could be due to a lack of synaptic contacts between the graft-derived ganglionic fibers and host hippocampal neurons.
  •  
4.
  • Kokaia, Merab, et al. (författare)
  • Suppressed epileptogenesis in BDNF mutant mice
  • 1995
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886. ; 133:2, s. 215-224
  • Tidskriftsartikel (refereegranskat)abstract
    • Kindling is an animal model of epilepsy in which repeated electrical stimulations lead to progressive and permanent amplification of seizure activity, culminating in generalized convulsions. Each brief period of seizure activity during kindling epileptogenesis causes a marked, transient increase of the synthesis of brain-derived neurotrophic factor (BDNF) in cortical and hippocampal neurons. We find that the development of kindling is markedly suppressed in mice heterozygous for a deletion of the BDNF gene. In contrast, the maintenance of kindling is unaffected. The mutant mice show lower levels of BDNF mRNA in cortical and hippocampal neurons after seizures than do wild-type mice. Hippocampal mossy fiber sprouting is augmented in BDNF mutants but there are no other morphological abnormalities. These results show that BDNF plays an important role in establishing hyperexcitability during epileptogenesis, probably by increasing efficacy in stimulated synapses.
  •  
5.
  • Kokaia, Zaal, et al. (författare)
  • Regulation of brain-derived neurotrophic factor gene expression after transient middle cerebral artery occlusion with and without brain damage
  • 1995
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886. ; 136:1, s. 73-88
  • Tidskriftsartikel (refereegranskat)abstract
    • Levels of mRNA for c-fos, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), TrkB, and TrkC were studied using in situ hybridization in the rat brain at different reperfusion times after unilateral middle cerebral artery occlusion (MCAO). Short-term (15 min) MCAO, which does not cause neuronal death, induced elevated BDNF mRNA expression confined to ipsilateral frontal and cingulate cortices outside the ischemic area. With a longer duration of MCAO (2 h), which leads to cortical infarction, the increase was more marked and elevated BDNF mRNA levels were also detected bilaterally in dentate granule cells and CA1 and CA3 pyramidal neurons. Maximum expression was found after 2 h of reperfusion. At 24 h BDNF mRNA expression had returned to control values. In the ischemic core of the parietal cortex only scattered neurons were expressing high levels of BDNF mRNA after 15 min and 2 h of MCAO. Analysis of different BDNF transcripts showed that MCAO induced a marked increase of exon III mRNA but only small increases of exon I and II mRNAs in cortex and hippocampus. In contrast to BDNF mRNA, elevated expression of c-fos mRNA was observed in the entire ipsilateral cerebral cortex, including the ischemic core, after both 15 min and 2 h of MCAO. Two hours of MCAO also induced transient, bilateral increases of NGF and TrkB mRNA levels and a decrease of NT-3 mRNA expression, confined to dentate granule cells. The upregulation of BDNF mRNA expression in cortical neurons after MCAO is probably triggered by glutamate through a spreading depression-like mechanism. The lack of response of the BDNF gene in the ischemic core may be due to suppression of signal transduction or transcription factor synthesis caused by the ischemia. The observed pattern of gene expression after MCAO agrees well with a neuroprotective role of BDNF in cortical neurons. However, elevated levels of NGF and BDNF protein could also increase synaptic efficacy in the postischemic phase, which may promote epileptogenesis.
  •  
6.
  • Schlifke, Irene, et al. (författare)
  • Galanin expressed in the excitatory fibers attenuates synaptic strength and generalized seizures in the piriform cortex of mice.
  • 2006
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886. ; 200:2, s. 398-406
  • Tidskriftsartikel (refereegranskat)abstract
    • The neuropeptide galanin is considered to be an endogenous antiepileptic agent, presumably acting via inhibition of glutamate release. Previously, we have demonstrated that in mice ectopically overexpressing galanin in cortical and hippocampal neurons, particularly in granule cells and their axons, the mossy fibers, hippocampal kindling epileptogenesis is suppressed and is associated with attenuated frequency facilitation in mossy fiber-CA3 cell synapses. We hypothesized that changes in synaptic transmission might occur also in other excitatory synapses of the galanin overexpressing (GalOE) mouse, contributing to seizure suppression. Lateral olfactory tract (LOT) synapses, formed by axons of olfactory bulb (013) mitral cells and targeting piriform cortex (PC) pyramidal cells, ectopically express galanin in GalOE mice. Using whole-cell patch-clamp recordings, we found that excitatory synaptic responses recorded in PC pyramidal cells during high frequency stimulation of the LOT were attenuated in GalOE mice as compared to wild-type controls. This effect was mimicked by bath application of galanin or its agonist galnon to wild-type slices, supporting the notion of ectopic galanin action. Since the high frequency activation induced in vitro resembles epileptic seizures in vivo, we asked whether the observed synaptic inhibition would result in altered epileptogenesis when animals were kindled via the same synapses. In male GalOE mice, we found that the latency to convulsions was prolonged, and once animals had experienced the first stage 5 seizure, generalized seizures were less sustainable. These data indicate that the PC is a possible target for epilepsy treatment by ectopically overexpressing galanin to modulate seizure activity. (c) 2006 Elsevier Inc. All rights reserved.
  •  
7.
  • Toft Sörensen, Andreas, et al. (författare)
  • Activity-dependent long-term plasticity of afferent synapses on grafted stem/progenitor cell-derived neurons.
  • 2011
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886. ; 229, s. 274-281
  • Tidskriftsartikel (refereegranskat)abstract
    • Stem cell-based cell replacement therapies aiming at restoring injured or diseased brain function ultimately rely on the capability of transplanted cells to promote functional recovery. The mechanisms by which stem cell-based therapies for neurological conditions can lead to functional recovery are uncertain, but structural and functional repair appears to depend on integration of transplanted cell-derived neurons into neuronal circuitries. The nature by which stem/progenitor cell-derived neurons synaptically integrate into neuronal circuitries is largely unexplored. Here we show that transplanted GFP-labeled neuronal progenitor cells into the rat hippocampus exhibit mature neuronal morphology following 4-10 weeks. GFP-positive cells were preferentially integrated into the principal cell layers of hippocampus, particularly CA3. Patch-clamp recordings from GFP-expressing cells revealed that they generated fast action potentials, and their intrinsic membrane properties were overall similar to endogenous host neurons recorded in same areas. As judged by occurrence of spontaneous excitatory postsynaptic currents (EPSCs), transplanted GFP-positive cells were synaptically integrated into the host circuitry. Comparable to host neurons, both paired-pulse depression and facilitation of afferent fiber stimulation-evoked EPSCs were observed in GFP-positive cells. Upon high-frequency stimulation, GFP-positive cells displayed post-tetanic potentiation of EPSCs, in some cases followed by long-term potentiation (LTP) lasting for more than 30 min. Our data show for the first time that transplanted neuronal progenitor cells can become functional neurons and their afferent synapses are capable of expressing activity-dependent short and long-term plasticity. These synaptic properties may facilitate host-to-graft interactions and regulate activity of the grafted cells promoting functional recovery of the diseased brain.
  •  
8.
  • Toft Sörensen, Andreas, et al. (författare)
  • Hippocampal NPY gene transfer attenuates seizures without affecting epilepsy-induced impairment of LTP.
  • 2009
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886. ; 215, s. 328-333
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, hippocampal neuropeptide Y (NPY) gene therapy has been shown to effectively suppress both acute and chronic seizures in animal model of epilepsy, thus representing a promising novel antiepileptic treatment strategy, particularly for patients with intractable mesial temporal lobe epilepsy (TLE). However, our previous studies show that recombinant adeno-associated viral (rAAV)-NPY treatment in naive rats attenuates long-term potentiation (LTP) and transiently impairs hippocampal learning process, indicating that negative effect on memory function could be a potential side effect of NPY gene therapy. Here we report how rAAV vector-mediated overexpression of NPY in the hippocampus affects rapid kindling, and subsequently explore how synaptic plasticity and transmission is affected by kindling and NPY overexpression by field recordings in CA1 stratum radiatum of brain slices. In animals injected with rAAV-NPY, we show that rapid kindling-induced hippocampal seizures in vivo are effectively suppressed as compared to rAAV-empty injected (control) rats. Six to nine weeks later, basal synaptic transmission and short-term synaptic plasticity are unchanged after rapid kindling, while LTP is significantly attenuated in vitro. Importantly, transgene NPY overexpression has no effect on short-term synaptic plasticity, and does not further compromise LTP in kindled animals. These data suggest that epileptic seizure-induced impairment of memory function in the hippocampus may not be further affected by rAAV-NPY treatment, and may be considered less critical for clinical application in epilepsy patients already experiencing memory disturbances.
  •  
9.
  • Tønnesen, Jan, et al. (författare)
  • Functional properties of the human ventral mesencephalic neural stem cell line hVM1.
  • 2010
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886. ; 223, s. 653-656
  • Tidskriftsartikel (refereegranskat)abstract
    • The human fetal ventral mesencephalon-derived stem cell line, hVM1, yields high number of tyrosine hydroxylase-expressing presumed dopaminergic neurons upon in vitro differentiation. Here we report that cells generated from this line differentiate into a neuronal phenotype, express electrophysiological properties of functional neurons and respond to neurotransmitters in vitro. However, the electrophysiological properties are immature and the cells require longer maturation time than possible under in vitro conditions.
  •  
10.
  • Wood, James, et al. (författare)
  • Functional integration of new hippocampal neurons following insults to the adult brain is determined by characteristics of pathological environment.
  • 2011
  • Ingår i: Experimental Neurology. - : Elsevier BV. - 0014-4886. ; 229:2, s. 484-493
  • Tidskriftsartikel (refereegranskat)abstract
    • We have previously shown that following severe brain insults, chronic inflammation induced by lipopolysaccharide (LPS) injection, and status epilepticus, new dentate granule cells exhibit changes of excitatory and inhibitory synaptic drive indicating that they may mitigate the abnormal brain function. Major inflammatory changes in the environment encountering the new neurons were a common feature of these insults. Here, we have asked how the morphology and electrophysiology of new neurons are affected by a comparably mild pathology: repetitive seizures causing hyperexcitability but not inflammation. Rats were subjected to rapid kindling, i.e., 40 rapidly recurring, electrically-induced seizures, and subsequently exposed to stimulus-evoked seizures twice weekly. New granule cells were labeled 1week after the initial insult with a retroviral vector encoding green fluorescent protein. After 6-8weeks, new neurons were analyzed using confocal microscopy and whole-cell patch-clamp recordings. The new neurons exposed to the pathological environment exhibited only subtle changes in their location, orientation, dendritic arborizations, and spine morphology. In contrast to the more severe insults, the new neurons exposed to rapid kindling and stimulus-evoked seizures exhibited enhanced afferent excitatory synaptic drive which could suggest that the cells that had developed in this environment contributed to hyperexcitability. However, the new neurons showed concomitant reduction of intrinsic excitability which may counteract the propagation of this excitability to the target cells. This study provides further evidence that following insults to the adult brain, the pattern of synaptic alterations at afferent inputs to newly generated neurons is dependent on the characteristics of the pathological environment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy