SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0021 8790 OR L773:1365 2656 ;lar1:(lu)"

Sökning: L773:0021 8790 OR L773:1365 2656 > Lunds universitet

  • Resultat 1-10 av 48
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Culina, Antica, et al. (författare)
  • Connecting the data landscape of long-term ecological studies : The SPI-Birds data hub
  • 2021
  • Ingår i: Journal of Animal Ecology. - : John Wiley & Sons. - 0021-8790 .- 1365-2656. ; 90:9, s. 2147-2160
  • Tidskriftsartikel (refereegranskat)abstract
    • The integration and synthesis of the data in different areas of science is drastically slowed and hindered by a lack of standards and networking programmes. Long-term studies of individually marked animals are not an exception. These studies are especially important as instrumental for understanding evolutionary and ecological processes in the wild. Furthermore, their number and global distribution provides a unique opportunity to assess the generality of patterns and to address broad-scale global issues (e.g. climate change). To solve data integration issues and enable a new scale of ecological and evolutionary research based on long-term studies of birds, we have created the SPI-Birds Network and Database ()-a large-scale initiative that connects data from, and researchers working on, studies of wild populations of individually recognizable (usually ringed) birds. Within year and a half since the establishment, SPI-Birds has recruited over 120 members, and currently hosts data on almost 1.5 million individual birds collected in 80 populations over 2,000 cumulative years, and counting. SPI-Birds acts as a data hub and a catalogue of studied populations. It prevents data loss, secures easy data finding, use and integration and thus facilitates collaboration and synthesis. We provide community-derived data and meta-data standards and improve data integrity guided by the principles of Findable, Accessible, Interoperable and Reusable (FAIR), and aligned with the existing metadata languages (e.g. ecological meta-data language). The encouraging community involvement stems from SPI-Bird's decentralized approach: research groups retain full control over data use and their way of data management, while SPI-Birds creates tailored pipelines to convert each unique data format into a standard format. We outline the lessons learned, so that other communities (e.g. those working on other taxa) can adapt our successful model. Creating community-specific hubs (such as ours, COMADRE for animal demography, etc.) will aid much-needed large-scale ecological data integration.
  •  
2.
  • Vinterstare, Jerker, et al. (författare)
  • More than meets the eye : Predator-induced pupil size plasticity in a teleost fish
  • 2020
  • Ingår i: Journal of Animal Ecology. - : Wiley-Blackwell. - 0021-8790 .- 1365-2656. ; 89:10, s. 2258-2267
  • Tidskriftsartikel (refereegranskat)abstract
    • Most animals are visually oriented, and their eyes provide their ‘window to the world’. Eye size correlates positively with visual performance, because larger eyes can house larger pupils that increase photon catch and contrast discrimination, particularly under dim light, which have positive effects on behaviours that enhance fitness, including predator avoidance and foraging. Recent studies have linked predation risk to selection for larger eyes and pupils, and such changes should be of importance for the majority of teleost fishes as they have a pupil that is fixed in size (eyes lack a pupillary sphincter muscle) and, hence, do not respond to changes in light conditions. Here, we quantify eye and pupil size of individual crucian carp, a common freshwater fish, following controlled manipulations of perceived predation risk (presence/absence). We also tested if crucian carp responded to increased predation risk by shifts in diel activity patterns. We found that crucian carp show phenotypic plasticity with regards to pupil size, but not eye size, as pupil size increased when exposed to predators (pike). Predator-exposed crucian carp also shifted from diurnal to nocturnal activity. Using a modelling exercise, we moreover show that the plastically enlarged pupils significantly increase visual range, especially for small objects under dim light conditions. Overall, our results provide compelling evidence for predator-induced pupil enlargement resulting in enhanced visual capabilities in a teleost fish. Pupil size plasticity in combination with the observed shift towards nocturnal activity may allow for efficient foraging also under dark conditions when predation risk from diurnal and visually oriented predators is reduced. The data highlight the powerful role of predation risk for eye development and evolution.
  •  
3.
  • Wells, Harry B.M., et al. (författare)
  • Experimental evidence that effects of megaherbivores on mesoherbivore space use are influenced by species' traits
  • 2021
  • Ingår i: Journal of Animal Ecology. - : Wiley. - 0021-8790 .- 1365-2656. ; 90:11, s. 2510-2522
  • Tidskriftsartikel (refereegranskat)abstract
    • The extinction of 80% of megaherbivore (>1,000 kg) species towards the end of the Pleistocene altered vegetation structure, fire dynamics and nutrient cycling world-wide. Ecologists have proposed (re)introducing megaherbivores or their ecological analogues to restore lost ecosystem functions and reinforce extant but declining megaherbivore populations. However, the effects of megaherbivores on smaller herbivores are poorly understood. We used long-term exclusion experiments and multispecies hierarchical models fitted to dung counts to test (a) the effect of megaherbivores (elephant and giraffe) on the occurrence (dung presence) and use intensity (dung pile density) of mesoherbivores (2–1,000 kg), and (b) the extent to which the responses of each mesoherbivore species was predictable based on their traits (diet and shoulder height) and phylogenetic relatedness. Megaherbivores increased the predicted occurrence and use intensity of zebras but reduced the occurrence and use intensity of several other mesoherbivore species. The negative effect of megaherbivores on mesoherbivore occurrence was stronger for shorter species, regardless of diet or relatedness. Megaherbivores substantially reduced the expected total use intensity (i.e. cumulative dung density of all species) of mesoherbivores, but only minimally reduced the expected species richness (i.e. cumulative predicted occurrence probabilities of all species) of mesoherbivores (by <1 species). Simulated extirpation of megaherbivores altered use intensity by mesoherbivores, which should be considered during (re)introductions of megaherbivores or their ecological proxies. Species' traits (in this case shoulder height) may be more reliable predictors of mesoherbivores' responses to megaherbivores than phylogenetic relatedness, and may be useful for predicting responses of data-limited species.
  •  
4.
  • Birkhofer, Klaus, et al. (författare)
  • Land-use type and intensity differentially filter traits in above- and below-ground arthropod communities
  • 2017
  • Ingår i: Journal of Animal Ecology. - : Wiley. - 0021-8790 .- 1365-2656. ; 86:3, s. 511-520
  • Tidskriftsartikel (refereegranskat)abstract
    • Along with the global decline of species richness goes a loss of ecological traits. Associated biotic homogenization of animal communities and narrowing of trait diversity threaten ecosystem functioning and human well-being. High management intensity is regarded as an important ecological filter, eliminating species that lack suitable adaptations. Below-ground arthropods are assumed to be less sensitive to such effects than above-ground arthropods. Here, we compared the impact of management intensity between (grassland vs. forest) and within land-use types (local management intensity) on the trait diversity and composition in below- and above-ground arthropod communities. We used data on 722 arthropod species living above-ground (Auchenorrhyncha and Heteroptera), primarily in soil (Chilopoda and Oribatida) or at the interface (Araneae and Carabidae). Our results show that trait diversity of arthropod communities is not primarily reduced by intense local land use, but is rather affected by differences between land-use types. Communities of Auchenorrhyncha and Chilopoda had significantly lower trait diversity in grassland habitats as compared to forests. Carabidae showed the opposite pattern with higher trait diversity in grasslands. Grasslands had a lower proportion of large Auchenorrhyncha and Carabidae individuals, whereas Chilopoda and Heteroptera individuals were larger in grasslands. Body size decreased with land-use intensity across taxa, but only in grasslands. The proportion of individuals with low mobility declined with land-use intensity in Araneae and Auchenorrhyncha, but increased in Chilopoda and grassland Heteroptera. The proportion of carnivorous individuals increased with land-use intensity in Heteroptera in forests and in Oribatida and Carabidae in grasslands. Our results suggest that gradients in management intensity across land-use types will not generally reduce trait diversity in multiple taxa, but will exert strong trait filtering within individual taxa. The observed patterns for trait filtering in individual taxa are not related to major classifications into above- and below-ground species. Instead, ecologically different taxa resembled each other in their trait diversity and compositional responses to land-use differences. These previously undescribed patterns offer an opportunity to develop management strategies for the conservation of trait diversity across taxonomic groups in permanent grassland and forest habitats.
  •  
5.
  •  
6.
  • Johansson, Jacob, et al. (författare)
  • Adaptation of reproductive phenology to climate change with ecological feedback via dominance hierarchies.
  • 2014
  • Ingår i: Journal of Animal Ecology. - : Wiley. - 1365-2656 .- 0021-8790. ; 83:2, s. 440-449
  • Tidskriftsartikel (refereegranskat)abstract
    • Phenological shifts belong to the most commonly observed biological responses to recent climate change. It is, however, often unclear how these shifts are linked to demography and competitive interactions. We develop an eco-evolutionary model to study adaptation of timing of reproduction in organisms with social dominance hierarchies. We focus on residential birds with winter flocks, where success in competition for territories among offspring depends on ranking given by prior residence. We study the effects of environmental change on breeding population densities, ensuing selection pressures and long-term evolutionary equilibria. We consider changes in food peak date, in winter survival, in total reproductive output and in the width of the food distribution. We show that the evolutionarily stable hatching date will advance with increasing winter survival and reproductive output since these parameters increase habitat saturation and post-fledging competition. Increasing the length of the breeding season also selects for earlier hatching date due to the reduced costs for producing offspring with high ranking. Our analysis shows that there is little correlation between short-term and long-term population responses across different scenarios of environmental change. However, short-term population growth consistently predicts selection for earlier reproduction. Hence, the model identifies changed breeding population density as a key factor to understanding phenological adaptation in systems with prior residence advantages. While selection for change in reproductive phenology is often explained by changed seasonal variation in environmental variables, such as food abundance, we show that environmental change without apparent effects on seasonality can critically affect phenological adaptation. Such factors can mask or even override influences of changed seasonality on phenology. The model thus offers a conceptually new set of explanations for understanding phenological and demographic trends in a changing climate.
  •  
7.
  • Klaassen, Raymond, et al. (författare)
  • When and where does mortality occur in migratory birds? Direct evidence from long-term satellite tracking of raptors.
  • 2014
  • Ingår i: Journal of Animal Ecology. - : Wiley. - 1365-2656 .- 0021-8790. ; 83:1, s. 176-184
  • Tidskriftsartikel (refereegranskat)abstract
    • Information about when and where animals die is important to understand population regulation. In migratory animals, mortality might occur not only during the stationary periods (e.g. breeding and wintering) but also during the migration seasons. However, the relative importance of population limiting factors during different periods of the year remains poorly understood, and previous studies mainly relied on indirect evidence. Here, we provide direct evidence about when and where migrants die by identifying cases of confirmed and probable deaths in three species of long-distance migratory raptors tracked by satellite telemetry. We show that mortality rate was about six times higher during migration seasons than during stationary periods. However, total mortality was surprisingly similar between periods, which can be explained by the fact that risky migration periods are shorter than safer stationary periods. Nevertheless, more than half of the annual mortality occurred during migration. We also found spatiotemporal patterns in mortality: spring mortality occurred mainly in Africa in association with the crossing of the Sahara desert, while most mortality during autumn took place in Europe. Our results strongly suggest that events during the migration seasons have an important impact on the population dynamics of long-distance migrants. We speculate that mortality during spring migration may account for short-term annual variation in survival and population sizes, while mortality during autumn migration may be more important for long-term population regulation (through density-dependent effects).
  •  
8.
  • Mueller, Anna-Katharina, et al. (författare)
  • Intraguild predation leads to cascading effects on habitat choice, behaviour and reproductive performance.
  • 2016
  • Ingår i: Journal of Animal Ecology. - : Wiley. - 1365-2656 .- 0021-8790.
  • Tidskriftsartikel (refereegranskat)abstract
    • 1.Intraguild predation (IGP) is a commonly recognised mechanism influencing the community structure of predators, but the complex interactions are notoriously difficult to disentangle. The mesopredator suppression hypothesis predicts that a superpredator may either simultaneously repress two mesopredators, restrain the dominant one and thereby release the subdominant mesopredator, or elicit different responses by both mesopredators. 2.We show the outcome arising from such conditions in a three-level predator assemblage (Eurasian eagle owl Bubo bubo L., northern goshawk Accipiter gentilis L., and common buzzard Buteo buteo L.) studied over 25 years. In the second half of the study period, the eagle owl re-colonised the study area, thereby providing a natural experiment of superpredator introduction. We combined this setup with detailed GIS-analysis of habitat use and a field experiment simulating intrusion by the superpredator into territories of the subdominant mesopredator, the buzzard. 3.Although population trends were positive for all three species in the assemblage, the proportion of failed breeding attempts increased significantly in both mesopredators after the superpredator re-colonised the area. 4.We predicted that superpredator-induced niche shifts in the dominant mesopredator may facilitate mesopredator coexistence in superpredator-free refugia. We found significant changes in nesting habitat choice in goshawk, but not in buzzard. Since competition for enemy-free refugia and the rapid increase in population density may have constrained niche shifts of the subdominant mesopredator, we further predicted behavioural changes in response to the superpredator. The field experiment indeed showed a significant increase in aggressive response of buzzards toward eagle owl territory intrusion over the course of ten years, probably due to phenotypic plasticity in the response towards superpredation risk. 5.Overall, our results show that intraguild predation can be a powerful force of behavioural change, simultaneously influencing habitat use and aggressiveness in predator communities. These changes might help to buffer mesopredator populations against the negative effects of intraguild predation. This article is protected by copyright. All rights reserved.
  •  
9.
  • Pärssinen, Varpu, et al. (författare)
  • Maladaptive migration behaviour in hybrids links to predator-mediated ecological selection
  • 2020
  • Ingår i: Journal of Animal Ecology. - : John Wiley & Sons. - 0021-8790 .- 1365-2656. ; 89:11, s. 2596-2604
  • Tidskriftsartikel (refereegranskat)abstract
    • Different migratory species have evolved distinct migratory characteristics that improve fitness in their particular ecological niches. However, when such species hybridize, migratory traits from parental species can combine maladaptively and cause hybrids to fall between parental fitness peaks, with potential consequences for hybrid viability and species integrity. Here, we take advantage of a natural cross-breeding incident to study migratory behaviour in naturally occurring hybrids as well as in their parental species and explore links between migratory traits and predation risk. To achieve this, we used electronic tags and passive telemetry to record detailed individual migration patterns (timing and number of migratory trips) in two common freshwater fish species, roachRutilus rutilus, common breamAbramis bramaas well as their hybrids. Next, we scanned for tags regurgitated by a key avian predator (great cormorantPhalacrocorax carbo) at nearby roosting sites, allowing us to directly link migratory behaviour to predation risk in the wild. We found that hybrid individuals showed a higher number of short, multi-trip movements between lake and stream habitats as compared to both parental species. The mean date of first lake departure differed between bream and roach by more than 10 days, while hybrids departed in two distinct peaks that overlapped with the parental species' averages. Moreover, the probability of cormorant predation increased with multi-trip movement frequency across species and was higher for hybrids. Our data provide novel insights into hybrid viability, with links to predator-mediated ecological selection. Increased exposure to predators via maladaptive migratory behaviour reduces hybrid survival and can thereby reinforce species integrity.
  •  
10.
  • Tayleur, Catherine, et al. (författare)
  • Impact of climate change on communities: revealing species' contribution.
  • 2013
  • Ingår i: Journal of Animal Ecology. - : Wiley. - 1365-2656 .- 0021-8790. ; 82:3, s. 551-561
  • Tidskriftsartikel (refereegranskat)abstract
    • Although climate is known to play an important role in structuring biological communities, high-resolution analyses of recent climatic impacts on multiple components of diversity are still sparse. Additionally, there is a lack of knowledge about which species drive community response to environmental change. We used a long-term breeding bird data set that encompasses a large latitudinal and altitudinal range to model the effect of temperature on spatial and temporal patterns in alpha and beta diversity. We also established a novel framework for identifying species-specific contributions to these macroecological patterns, hence combining two different approaches for identifying climatic impacts. Alpha diversity increased over time, whilst beta diversity declined; both diversity metrics showed a significant relationship with recent temperature anomalies. By partitioning beta diversity, we showed that the decline was predominately driven by changes in species turnover rather than nestedness suggesting a process of replacement by more common species. Using jackknife analyses we identified how individual species influenced the modelled relationships of diversity with temperature and time. Influential species tended to be habitat generalists with moderate to large distributions. We demonstrate that different facets of avian diversity can respond rapidly to temperature anomalies and as a result have undergone significant changes in the last decade. In general, it appears that warming temperatures are driving compositional homogenization of temperate bird communities via range expansion of common generalist species.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 48

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy