SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0021 8790 OR L773:1365 2656 ;pers:(Rowe Owen)"

Sökning: L773:0021 8790 OR L773:1365 2656 > Rowe Owen

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liess, Antonia, et al. (författare)
  • Cool tadpoles from Arctic environments waste fewer nutrients : high gross growth efficiencies lead to low consumer-mediated nutrient recycling in the North
  • 2015
  • Ingår i: Journal of Animal Ecology. - : Wiley. - 0021-8790 .- 1365-2656. ; 84:6, s. 1744-1756
  • Tidskriftsartikel (refereegranskat)abstract
    • Endothermic organisms can adapt to short growing seasons, low temperatures and nutrient limitation by developing high growth rates and high gross growth efficiencies (GGEs). Animals with high GGEs are better at assimilating limiting nutrients and thus should recycle (or lose) fewer nutrients. Longer guts in relation to body mass may facilitate higher GGE under resource limitation. Within the context of ecological stoichiometry theory, this study combines ecology with evolution by relating latitudinal life-history adaptations in GGE, mediated by gut length, to its ecosystem consequences, such as consumer-mediated nutrient recycling. In common garden experiments, we raised Rana temporaria tadpoles from two regions (Arctic/Boreal) under two temperature regimes (18/23 degrees C) crossed with two food quality treatments (high/low-nitrogen content). We measured tadpole GGEs, total nutrient loss (excretion+egestion) rates and gut length during ontogeny. In order to maintain their elemental balance, tadpoles fed low-nitrogen (N) food had lower N excretion rates and higher total phosphorous (P) loss rates than tadpoles fed high-quality food. In accordance with expectations, Arctic tadpoles had higher GGEs and lower N loss rates than their low-latitude conspecifics, especially when fed low-N food, but only in ambient temperature treatments. Arctic tadpoles also had relatively longer guts than Boreal tadpoles during early development. That temperature and food quality interacted with tadpole region of origin in affecting tadpole GGEs, nutrient loss rates and relative gut length, suggests evolved adaptation to temperature and resource differences. With future climate change, mean annual temperatures will increase. Additionally, species and genotypes will migrate north. This will change the functioning of Boreal and Arctic ecosystems by affecting consumer-mediated nutrient recycling and thus affect nutrient dynamics in general. Our study shows that evolved latitudinal adaption can change key ecosystem functions.
  •  
2.
  • Liess, Antonia, et al. (författare)
  • Hot tadpoles from cold environments need more nutrients - life history and stoichiometry reflects latitudinal adaptation
  • 2013
  • Ingår i: Journal of Animal Ecology. - : Wiley-Blackwell. - 0021-8790 .- 1365-2656. ; 82:6, s. 1316-1325
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. High-latitude species (and populations within species) are adapted to short and cold summers. They often have high growth and development rates to fully use the short growing season and mature before the onset of winter. Within the context of ecological stoichiometry theory, this study combines ecology with evolution by relating latitudinal life-history adaptations to their molecular consequences in body nutrient composition in Rana temporaria tadpoles. Temperature and food quality were manipulated during the development of tadpoles from Arctic and Boreal origins. We determined tadpole growth rate, development rate, body size and nutrient content, to test whether (i) Arctic tadpoles could realize higher growth rates and development rates with the help of higher-quality food even when food quantity was unchanged, (ii) Arctic and Boreal tadpoles differed in their stoichiometric (and life history) response to temperature changes, (iii) higher growth rates lead to higher tadpole P content (growth rate hypothesis) and (iv) allometric scaling affects tadpole nutrient allocation. We found that especially Arctic tadpoles grew and developed faster with the help of higher-quality food and that tadpoles differed in their stoichiometric (and life history) response to temperature changes depending on region of origin (probably due to different temperature optima). There was no evidence that higher growth rates mediated the positive effect of temperature on tadpole P content. On the contrary, the covariate growth rate was negatively connected with tadpole P content (refuting the growth rate hypothesis). Lastly, tadpole P content was not related to body size, but tadpole C content was higher in larger tadpoles, probably due to increased fat storage. We conclude that temperature had a strong effect on tadpole life history, nutrient demand and stoichiometry and that this effect depended on the evolved life history.
  •  
3.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy