SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0021 8790 OR L773:1365 2656 ;pers:(Tack Ayco J. M.)"

Sökning: L773:0021 8790 OR L773:1365 2656 > Tack Ayco J. M.

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blanchet, F. Guillaume, et al. (författare)
  • Related herbivore species show similar temporal dynamics
  • 2018
  • Ingår i: Journal of Animal Ecology. - : Wiley. - 0021-8790 .- 1365-2656. ; 87:3, s. 801-812
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Within natural communities, different taxa display different dynamics in time. Why this is the case we do not fully know. This thwarts our ability to predict changes in community structure, which is important for both the conservation of rare species in natural communities and for the prediction of pest outbreaks in agriculture. 2. Species sharing phylogeny, natural enemies and/or life-history traits have been hypothesized to share similar temporal dynamics. We operationalized these concepts into testing whether feeding guild, voltinism, similarity in parasitoid community and/or phylogenetic relatedness explained similarities in temporal dynamics among herbivorous community members. 3. Focusing on two similar datasets from different geographical regions (Finland and Japan), we used asymmetric eigenvector maps as temporal variables to characterize species-and community-level dynamics of specialist insect herbivores on oak (Quercus). We then assessed whether feeding guild, voltinism, similarity in parasitoid community and/or phylogenetic relatedness explained similarities in temporal dynamics among taxa. 4. Species-specific temporal dynamics varied widely, ranging from directional decline or increase to more complex patterns. Phylogeny was a clear predictor of similarity in temporal dynamics at the Finnish site, whereas for the Japanese site, the data were uninformative regarding a phylogenetic imprint. Voltinism, feeding guild and parasitoid overlap explained little variation at either location. Despite the rapid temporal dynamics observed at the level of individual species, these changes did not translate into any consistent temporal changes at the community level in either Finland or Japan. 5. Overall, our findings offer no direct support for the notion that species sharing natural enemies and/or life-history traits would be characterized by similar temporal dynamics, but reveal a strong imprint of phylogenetic relatedness. As this phylogenetic signal cannot be attributed to guild, voltinism or parasitoids, it will likely derive from shared microhabitat, microclimate, anatomy, physiology or behaviour. This has important implications for predicting insect outbreaks and for informing insect conservation. We hope that future studies will assess the generality of our findings across plant-feeding insect communities and beyond, and establish the more precise mechanism(s) underlying the phylogenetic imprint.
  •  
2.
  • Ekholm, Adam, et al. (författare)
  • Host plant phenology, insect outbreaks and herbivore communities - The importance of timing
  • 2020
  • Ingår i: Journal of Animal Ecology. - : Wiley. - 0021-8790 .- 1365-2656. ; 89:3, s. 829-841
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change may alter the dynamics of outbreak species by changing the phenological synchrony between herbivores and their host plants. As host plant phenology has a genotypic component that may interact with climate, infestation levels among genotypes might change accordingly. When the outbreaking herbivore is active early in the season, its infestation levels may also leave a detectable imprint on herbivores colonizing the plant later in the season. In this study, we first investigated how the spring phenology and genotype of Quercus robur influenced the density of the spring-active, outbreaking leaf miner Acrocercops brongniardellus. We then assessed how intraspecific density affected the performance of A. brongniardellus and how oak genotype and density of A. brongniardellus affected the insect herbivore community. We found that Q. robur individuals of late spring phenology were more strongly infested by A. brongniardellus. Conspecific pupae on heavily infested oaks tended to be lighter, and fewer heterospecific insect herbivores colonized the oak later in the season. Beyond its effects through phenology, plant genotype left an imprint on herbivore species richness and on two insect herbivores. Our results suggest a chain of knock-on effects from plant phenology, through the outbreaking species to the insect herbivore community. Given the finding of how phenological synchrony between the outbreak species and its host plant influences infestation levels, a shift in synchrony may then change outbreak dynamics and cause cascading effects on the insect community.
  •  
3.
  • Gaytán, Álvaro, 1988-, et al. (författare)
  • Spring phenology and pathogen infection affect multigenerational plant attackers throughout the growing season
  • 2022
  • Ingår i: Journal of Animal Ecology. - : Wiley. - 0021-8790 .- 1365-2656. ; 91:11, s. 2235-2247
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Climate change has been shown to advance spring phenology, increase the number of insect generations per year (multivoltinism) and increase pathogen infection levels.2. However, we lack insights into the effects of plant spring phenology and the biotic environment on the preference and performance of multivoltine herbivores and whether such effects extend into the later part of the growing season.3. To this aim, we used a multifactorial growth chamber experiment to examine the influence of spring phenology on plant pathogen infection, and how the independent and interactive effects of spring phenology and plant pathogen infection affect the preference and performance of multigenerational attackers (the leaf miner Tischeria ekebladella and the aphid Tuberculatus annulatus) on the pedunculate oak in the early, mid and late parts of the plant growing season.4. Pathogen infection was highest on late phenology plants, irrespective of whether inoculations were conducted in the early, mid or late season. The leaf miner consistently preferred to oviposit on middle and late phenology plants, as well as healthy plants, during all parts of the growing season, whereas we detected an interactive effect between spring phenology and pathogen infection on the performance of the leaf miner. Aphids preferred healthy, late phenology plants during the early season, healthy plants during the mid season, and middle phenology plants during the late season, whereas aphid performance was consistently higher on healthy plants during all parts of the growing season.5. Our findings highlight that the impact of spring phenology on pathogen infection and the preference and performance of insect herbivores is not restricted to the early season, but that its imprint is still present - and sometimes equally strong - during the peak and end of the growing season. Plant pathogens generally negatively affected herbivore preference and performance, and modulated the effects of spring phenology. We conclude that spring phenology and pathogen infection are two important factors shaping the preference and performance of multigenerational plant attackers, which is particularly relevant given the current advance in spring phenology, pathogen outbreaks and increase in voltinism with climate change.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy