SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:0021 9258 ;pers:(Sandgren Mats)"

Search: L773:0021 9258 > Sandgren Mats

  • Result 1-10 of 13
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Borisova, Anna, et al. (author)
  • Structural and Functional Characterization of a Lytic Polysaccharide Monooxygenase with Broad Substrate Specificity
  • 2015
  • In: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 290, s. 22955-22969
  • Journal article (peer-reviewed)abstract
    • The recently discovered lytic polysaccharide monooxygenases (LPMOs) carry out oxidative cleavage of polysaccharides and are of major importance for efficient processing of biomass. NcLPMO9C from Neurospora crassa acts both on cellulose and on non-cellulose beta-glucans, including cellodextrins and xyloglucan. The crystal structure of the catalytic domain of NcLPMO9C revealed an extended, highly polar substrate-binding surface well suited to interact with a variety of sugar substrates. The ability of NcLPMO9C to act on soluble substrates was exploited to study enzyme-substrate interactions. EPR studies demonstrated that the Cu2+-center environment is altered upon substrate binding, whereas isothermal titration calorimetry studies revealed binding affinities in the low micromolar range for polymeric substrates that are due in part to the presence of a carbohydrate-binding module (CBM1). Importantly, the novel structure of NcLPMO9Cenabled a comparative study, revealing that the oxidative regioselectivity of LPMO9s (C1, C4, or both) correlates with distinct structural features of the copper coordination sphere. In strictly C1-oxidizing LPMO9s, access to the solvent-facing axial coordination position is restricted by a conserved tyrosine residue, whereas access to this same position seems unrestricted in C4-oxidizing LPMO9s. LPMO9s known to produce a mixture of C1- and C4- oxidized products show an intermediate situation.
  •  
2.
  • Dimarogona, Maria, et al. (author)
  • Comparison of three seemingly similar lytic polysaccharide monooxygenases from Neurospora crassa suggests different roles in plant biomass degradation
  • 2019
  • In: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 294, s. 15068-15081
  • Journal article (peer-reviewed)abstract
    • Many fungi produce multiple lytic polysaccharide monooxygenases (LPMOs) with seemingly similar functions, but the biological reason for this multiplicity remains unknown. To address this question, here we carried out comparative structural and functional characterizations of three cellulose-active C4-oxidizing family AA9 LPMOs from the fungus Neurospora crassa, NcLPMO9A (NCU02240), NcLPMO9C (NCU02916), and NcLPMO9D (NCU01050). We solved the three-dimensional structure of copper-bound NcLPMO9A at 1.6-? resolution and found that NcLPMO9A and NcLPMO9C, containing a CBM1 carbohydrate-binding module, bind cellulose more strongly and were less susceptible to inactivation than NcLPMO9D, which lacks a CBM. All three LPMOs were active on tamarind xyloglucan and konjac glucomannan, generating similar products but clearly differing in activity levels. Importantly, in some cases, the addition of phosphoric acid?swollen cellulose (PASC) had a major effect on activity: NcLPMO9A was active on xyloglucan only in the presence of PASC, and PASC enhanced NcLPMO9D activity on glucomannan. Interestingly, the three enzymes also exhibited large differences in their interactions with enzymatic electron donors, which could reflect that they are optimized to act with different reducing partners. All three enzymes efficiently used H2O2 as a cosubstrate, yielding product profiles identical to those obtained in O-2-driven reactions with PASC, xyloglucan, or glucomannan. Our results indicate that seemingly similar LPMOs act preferentially on different types of copolymeric substructures in the plant cell wall, possibly because these LPMOs are functionally adapted to distinct niches differing in the types of available reductants.
  •  
3.
  • Gudmundsson, Mikael, et al. (author)
  • Kinetic and molecular dynamics study of inhibition and transglycosylation in Hypocrea jecorina family 3 beta-glucosidases
  • 2019
  • In: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 294, s. 3169-3180
  • Journal article (peer-reviewed)abstract
    • -Glucosidases enhance enzymatic biomass conversion by relieving cellobiose inhibition of endoglucanases and cellobiohydrolases. However, the susceptibility of these enzymes to inhibition and transglycosylation at high glucose or cellobiose concentrations severely limits their activity and, consequently, the overall efficiency of enzyme mixtures. We determined the impact of these two processes on the hydrolytic activity of the industrially relevant family 3 -glucosidases from Hypocrea jecorina, HjCel3A and HjCel3B, and investigated the underlying molecular mechanisms through kinetic studies, binding free energy calculations, and molecular dynamics (MD) simulations. HjCel3B had a 7-fold higher specificity for cellobiose than HjCel3A but greater tendency for glucose inhibition. Energy decomposition analysis indicated that cellobiose has relatively weak electrostatic interactions with binding site residues, allowing it to be easily displaced by glucose and free to inhibit other hydrolytic enzymes. HjCel3A is, thus, preferable as an industrial -glucosidase despite its lower activity caused by transglycosylation. This competing pathway to hydrolysis arises from binding of glucose or cellobiose at the product site after formation of the glycosyl-enzyme intermediate. MD simulations revealed that binding is facilitated by hydrophobic interactions with Trp-37, Phe-260, and Tyr-443. Targeting these aromatic residues for mutation to reduce substrate affinity at the product site would therefore potentially mitigate transglycosidic activity. Engineering improved variants of HjCel3A and other structurally similar -glucosidases would have a significant economic effect on enzymatic biomass conversion in terms of yield and production cost as the process can be consequently conducted at higher substrate loadings.
  •  
4.
  • Gudmundsson, Mikael, et al. (author)
  • Structural and Electronic Snapshots during the Transition from a Cu(II) to Cu(I) Metal Center of a Lytic Polysaccharide Monooxygenase by X-ray Photoreduction
  • 2014
  • In: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 289, s. 18782-18792
  • Journal article (peer-reviewed)abstract
    • Lytic polysaccharide monooxygenases (LPMOs) are a recently discovered class of enzymes that employ a copper-mediated, oxidative mechanism to cleave glycosidic bonds. The LPMO catalytic mechanism likely requires that molecular oxygen first binds to Cu(I), but the oxidation state in many reported LPMO structures is ambiguous, and the changes in the LPMO active site required to accommodate both oxidation states of copper have not been fully elucidated. Here, a diffraction data collection strategy minimizing the deposited x-ray dose was used to solve the crystal structure of a chitin-specific LPMO from Enterococcus faecalis (EfaCBM33A) in the Cu(II)-bound form. Subsequently, the crystalline protein was photoreduced in the x-ray beam, which revealed structural changes associated with the conversion from the initial Cu(II)-oxidized form with two coordinated water molecules, which adopts a trigonal bipyramidal geometry, to a reduced Cu(I) form in a T-shaped geometry with no coordinated water molecules. A comprehensive survey of Cu(II) and Cu(I) structures in the Cambridge Structural Database unambiguously shows that the geometries observed in the least and most reduced structures reflect binding of Cu(II) and Cu(I), respectively. Quantum mechanical calculations of the oxidized and reduced active sites reveal little change in the electronic structure of the active site measured by the active site partial charges. Together with a previous theoretical investigation of a fungal LPMO, this suggests significant functional plasticity in LPMO active sites. Overall, this study provides molecular snapshots along the reduction process to activate the LPMO catalytic machinery and provides a general method for solving LPMO structures in both copper oxidation states.
  •  
5.
  • Haddad Momeni, Majid, et al. (author)
  • Structural, Biochemical, and Computational Characterization of the Glycoside Hydrolase Family 7 Cellobiohydrolase of the Tree-killing Fungus Heterobasidion irregulare
  • 2013
  • In: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 288:8, s. 5861-5872
  • Journal article (peer-reviewed)abstract
    • Root rot fungi of the Heterobasidion annosum complex are the most damaging pathogens in temperate forests, and the recently sequenced Heterobasidion irregulare genome revealed over 280 carbohydrate-active enzymes. Here, H. irregulare was grown on biomass, and the most abundant protein in the culture filtrate was identified as the only family 7 glycoside hydrolase in the genome, which consists of a single catalytic domain, lacking a linker and carbohydrate-binding module. The enzyme, HirCel7A, was characterized biochemically to determine the optimal conditions for activity. HirCel7A was crystallized and the structure, refined at 1.7 angstrom resolution, confirms that HirCel7A is a cellobiohydrolase rather than an endoglucanase, with a cellulose-binding tunnel that is more closed than Phanerochaete chrysosporium Cel7D and more open than Hypocrea jecorina Cel7A, suggesting intermediate enzyme properties. Molecular simulations were conducted to ascertain differences in enzyme-ligand interactions, ligand solvation, and loop flexibility between the family 7 glycoside hydrolase cellobiohydrolases from H. irregulare, H. jecorina, and P. chrysosporium. The structural comparisons and simulations suggest significant differences in enzyme-ligand interactions at the tunnel entrance in the -7 to -4 binding sites and suggest that a tyrosine residue at the tunnel entrance of HirCel7A may serve as an additional ligand-binding site. Additionally, the loops over the active site in H. jecorina Cel7A are more closed than loops in the other two enzymes, which has implications for the degree of processivity, endo- initiation, and substrate dissociation. Overall, this study highlights molecular level features important to understanding this biologically and industrially important family of glycoside hydrolases.
  •  
6.
  • Hansson, Henrik, et al. (author)
  • High-resolution structure of a lytic polysaccharide monooxygenase from Hypocrea jecorina reveals a predicted linker as an integral part of the catalytic domain
  • 2017
  • In: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 292, s. 19099-19109
  • Journal article (peer-reviewed)abstract
    • For decades, the enzymes of the fungus Hypocrea jecorina have served as a model system for the breakdown of cellulose. Three-dimensional structures for almost all H. jecorina cellulose-degrading enzymes are available, except for HjLPMO9A, belonging to the AA9 family of lytic polysaccharide monooxygenases (LPMOs). These enzymes enhance the hydrolytic activity of cellulases and are essential for cost-efficient conversion of lignocellulosic biomass. Here, using structural and spectroscopic analyses, we found that native HjLPMO9A contains a catalytic domain and a family-1 carbohydrate-binding module (CBM1) connected via a linker sequence. A C terminally truncated variant of HjLPMO9A containing 21 residues of the predicted linker was expressed at levels sufficient for analysis. Here, using structural, spectroscopic, and biochemical analyses, we found that this truncated variant exhibited reduced binding to and activity on cellulose compared with the full-length enzyme. Importantly, a 0.95- resolution X-ray structure of truncated HjLPMO9A revealed that the linker forms an integral part of the catalytic domain structure, covering a hydrophobic patch on the catalytic AA9 module. We noted that the oxidized catalytic center contains a Cu(II) coordinated by two His ligands, one of which has a His-brace in which the His-1 terminal amine group also coordinates to a copper. The final equatorial position of the Cu(II) is occupied by a water-derived ligand. The spectroscopic characteristics of the truncated variant were not measurably different from those of full-length HjLPMO9A, indicating that the presence of the CBM1 module increases the affinity of HjLPMO9A for cellulose binding, but does not affect the active site.
  •  
7.
  • Karkehabadi, Saeid, et al. (author)
  • Biochemical Characterization and Crystal Structures of a Fungal Family 3 beta-Glucosidase, Cel3A from Hypocrea jecorina
  • 2014
  • In: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 289, s. 31624-31637
  • Journal article (peer-reviewed)abstract
    • Cellulase mixtures from Hypocrea jecorina are commonly used for the saccharification of cellulose in biotechnical applications. The most abundant beta-glucosidase in the mesophilic fungus Hypocrea jecorina is HjCel3A, which hydrolyzes the beta-linkage between two adjacent molecules in dimers and short oligomers of glucose. It has been shown that enhanced levels of HjCel3A in H. jecorina cellulase mixtures benefit the conversion of cellulose to glucose. Biochemical characterization of HjCel3A shows that the enzyme efficiently hydrolyzes (1,4)-as well as (1,2)-, (1,3)-, and (1,6)-beta-D-linked disaccharides. For crystallization studies, HjCel3A was produced in both H. jecorina (HjCel3A) and Pichia pastoris (Pp-HjCel3A). Whereas the thermostabilities of HjCel3A and Pp-HjCel3A are the same, Pp-HjCel3A has a higher degree of N-linked glycosylation. Here, we present x-ray structures of HjCel3A with and without glucose bound in the active site. The structures have a three-domain architecture as observed previously for other glycoside hydrolase family 3 beta-glucosidases. Both production hosts resulted in HjCel3A structures that have N-linked glycosylations at Asn(208) and Asn(310). In H. jecorina-produced HjCel3A, a single N-acetylglucosamine is present at both sites, whereas in Pp-HjCel3A, the P. pastoris-produced HjCel3A enzyme, the glycan chains consist of 8 or 4 saccharides. The glycosylations are involved in intermolecular contacts in the structures derived from either host. Due to the different sizes of the glycosylations, the interactions result in different crystal forms for the two protein forms.
  •  
8.
  • Karkehabadi, Saeid, et al. (author)
  • Improving the thermal stability of cellobiohydrolase Cel7A from Hypocrea jecorina by directed evolution
  • 2017
  • In: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 292, s. 17418-17430
  • Journal article (peer-reviewed)abstract
    • Secreted mixtures of Hypocrea jecorina cellulases are able to efficiently degrade cellulosic biomass to fermentable sugars at large, commercially relevant scales. H. jecorina Cel7A, cellobiohydrolase I, from glycoside hydrolase family 7, is the workhorse enzyme of the process. However, the thermal stability of Cel7A limits its use to processes where temperatures are no higher than 50 degrees C. Enhanced thermal stability is desirable to enable the use of higher processing temperatures and to improve the economic feasibility of industrial biomass conversion. Here, we enhanced the thermal stability of Cel7A through directed evolution. Sites with increased thermal stability properties were combined, and a Cel7A variant (FCA398) was obtained, which exhibited a 10.4 degrees C increase in T-m and a 44-fold greater half-life compared with the wild-type enzyme. This Cel7A variant contains 18 mutated sites and is active under application conditions up to at least 75 degrees C. The X-ray crystal structure of the catalytic domain was determined at 2.1 angstrom resolution and showed that the effects of the mutations are local and do not introduce major backbone conformational changes. Molecular dynamics simulations revealed that the catalytic domain of wild-type Cel7A and the FCA398 variant exhibit similar behavior at 300 K, whereas at elevated temperature (475 and 525 K), the FCA398 variant fluctuates less and maintains more native contacts over time. Combining the structural and dynamic investigations, rationales were developed for the stabilizing effect at many of the mutated sites.
  •  
9.
  • Mikkelsen, Nils, et al. (author)
  • Comparison of glycoside hydrolase family 3 beta-xylosidases from basidiomycetes and ascomycetes reveals evolutionarily distinct xylan degradation systems
  • 2022
  • In: Journal of Biological Chemistry. - : Elsevier BV. - 0021-9258 .- 1083-351X. ; 298
  • Journal article (peer-reviewed)abstract
    • Xylan is the most common hemicellulose in plant cell walls, though the structure of xylan polymers differs between plant species. Here, to gain a better understanding of fungal xylan degradation systems, which can enhance enzymatic saccharification of plant cell walls in industrial processes, we conducted a comparative study of two glycoside hydrolase family 3 (GH3) beta-xylosidases (Bxls), one from the basidiomycete Phanerochaete chrysosporium (PcBxl3), and the other from the ascomycete Trichoderma reesei (TrXyl3A). A comparison of the crystal structures of the two enzymes, both with saccharide bound at the catalytic center, provided insight into the basis of substrate binding at each subsite. PcBxl3 has a substrate binding pocket at subsite-1, while TrXyl3A has an extra loop that contains additional binding subsites. Furthermore, kinetic experiments revealed that PcBxl3 degraded xylooligosaccharides faster than TrXyl3A, while the K-M values of TrXyl3A were lower than those of PcBxl3. The relationship between substrate specificity and degree of polymerization of substrates suggested that PcBxl3 preferentially degrades xylobiose (X-2), while TrXyl3A degrades longer xylooligosaccharides. Moreover, docking simulation supported the existence of extended positive subsites of TrXyl3A in the extra loop located at the N-terminus of the protein. Finally, phylogenetic analysis suggests that wood-decaying basidiomycetes use Bxls such as PcBxl3 that act efficiently on xylan structures from woody plants, whereas molds use instead Bxls that efficiently degrade xylan from grass. Our results provide added insights into fungal efficient xylan degradation systems.
  •  
10.
  • Sandgren, Mats, et al. (author)
  • Machine learning reveals sequence-function relationships in family 7 glycoside hydrolases
  • 2021
  • In: Journal of Biological Chemistry. - : Elsevier BV. - 0021-9258 .- 1083-351X. ; 297
  • Journal article (peer-reviewed)abstract
    • Family 7 glycoside hydrolases (GH7) are among the principal enzymes for cellulose degradation in nature and industrially. These enzymes are often bimodular, including a catalytic domain and carbohydrate-binding module (CBM) attached via a flexible linker, and exhibit an active site that binds cello-oligomers of up to ten glucosyl moieties. GH7 cellulases consist of two major subtypes: cellobiohydrolases (CBH) and endoglucanases (EG). Despite the critical importance of GH7 enzymes, there remain gaps in our understanding of how GH7 sequence and structure relate to function. Here, we employed machine learning to gain data-driven insights into relation-ships between sequence, structure, and function across the GH7 family. Machine-learning models, trained only on the number of residues in the active-site loops as features, were able to discriminate GH7 CBHs and EGs with up to 99% ac-curacy, demonstrating that the lengths of loops A4, B2, B3, and B4 strongly correlate with functional subtype across the GH7 family. Classification rules were derived such that specific residues at 42 different sequence positions each predicted the functional subtype with accuracies surpassing 87%. A random forest model trained on residues at 19 positions in the catalytic domain predicted the presence of a CBM with 89.5% accuracy. Our machine learning results recapitulate, as top-performing features, a substantial number of the sequence positions determined by previous experimental studies to play vital roles in GH7 activity. We surmise that the yet-to-be-explored sequence positions among the top-performing features also contribute to GH7 functional variation and may be exploited to understand and manipulate function.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view