SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0021 9967 ;pers:(Dircksen Heinrich 1954)"

Sökning: L773:0021 9967 > Dircksen Heinrich 1954

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Davis, N T, et al. (författare)
  • Crustacean cardioactive peptide-immunoreactive neurons in the hawkmoth Manduca sexta and changes in their immunoreactivity during postembryonic development.
  • 1993
  • Ingår i: Journal of Comparative Neurology. - : Wiley. - 0021-9967 .- 1096-9861. ; 338:4, s. 612-27
  • Tidskriftsartikel (refereegranskat)abstract
    • An antiserum against crustacean cardioactive peptide was used, in indirect immunocytochemistry on whole-mounts and Vibratome sections, to map immunoreactive neurons at various stages of postembryonic development of the hawkmoth Manduca sexta. About 90 immunoreactive neurons were identified. Many of these cells are immunoreactive at hatching and persist into the adult stage; others become immunoreactive late in postembryonic development. During adult development, transient immunoreactivity is expressed in several cells in the subesophageal and thoracic ganglia. Two sets of immunoreactive neurons are found in the protocerebrum of larvae, but only one of these sets persists into the adult stage. Paired lateral interneurons and neurosecretory neurons are segmentally repeated in the abdominal ganglia and are present from the first larval stage to the adult; the abdominal interneurons project contralaterally to arborizations in adjacent ganglia, and some ascend to tritocerebral arborizations. The abdominal neurosecretory cells, which correspond to a pair of cells reported to contain bursicon, project posteriorly to neurohemal release organs. Motor neurons of dorsal external oblique abdominal muscles become immunoreactive in the fourth larval stage. Paired median neurosecretory cells of abdominal ganglia become immunoreactive during the fifth larval stage. The immunoreactive median and lateral abdominal neurosecretory cells are a subset of a group of cells known to contain cardioactive peptides. Paired lateral neurosecretory cells of the subesophageal ganglion become immunoreactive during pupation and project to the corpora cardiaca and aorta of the adult. Many of the neurons identified here are comparable to crustacean cardioactive peptide-immunoreactive cells described previously in locusts and the mealworm beetle.
  •  
2.
  • Dircksen, Heinrich, 1954-, et al. (författare)
  • Ion transport peptide splice forms in central and peripheral neurons throughout postembryogenesis of Drosophila melanogaster.
  • 2008
  • Ingår i: The Journal of comparative neurology. - : Wiley. - 1096-9861 .- 0021-9967. ; 509:1, s. 23-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Ion transport peptides (ITPs) belong to a large arthropod neuropeptide family including crustacean hyperglycaemic hormones and are antidiuretic hormones in locusts. Because long and short ITP isoforms are generated by alternative splicing from a single gene in locusts and moths, we investigated whether similarly spliced gene products occur in the nervous system of Drosophila melanogaster throughout postembryogenesis. The itp gene CG13586 was reanalyzed, and we found three instead of the two previously annotated alternatively spliced mRNAs. These give rise to three different neuropeptides, two long C-terminally carboxylated isoforms (DrmITPL1 and DrmITPL2, both 87 amino acids) and one short amidated DrmITP (73 amino acids), which were partially identified biochemically. Immunocytochemistry and in situ hybridization reveal nine larval and 14 adult identified neurons: four pars lateralis neurosecretory neurons, three hindgut-innervating neurons in abdominal ganglia, and a stage-specific number of interneurons and peripheral bipolar neurons. The neurosecretory neurons persist throughout postembryogenesis, form release sites in corpora cardiaca, and invade corpora allata. One type of ITP-expressing interneuron exists only in the larval and prepupal subesophageal ganglia, whereas three types of interneurons in the adult brain arise in late pupae and invade circumscribed neuropils in superior median and lateral brain areas. One peripheral bipolar and putative sensory neuron type occurs in the larval, pupal, and adult preterminal abdominal segments. Although the neurosecretory neurons may release DrmITP and DrmITPL2 into the haemolymph, possible physiological roles of the hindgut-innervating and peripheral neurons as well as the interneurons are yet to be identified.
  •  
3.
  • Harzsch, Steffen, et al. (författare)
  • Local olfactory interneurons provide the basis for neurochemical regionalization of olfactory glomeruli in crustaceans
  • 2022
  • Ingår i: Journal of Comparative Neurology. - : Wiley. - 0021-9967 .- 1096-9861. ; 530:9, s. 1399-1422
  • Tidskriftsartikel (refereegranskat)abstract
    • The primary olfactory centers of metazoans as diverse as arthropods and mammals consist of an array of fields of dense synaptic neuropil, the olfactory glomeruli. However, the neurochemical structure of crustacean olfactory glomeruli is largely understudied when compared to the insects. We analyzed the glomerular architecture in selected species of hermit crabs using immunohistochemistry against presynaptic proteins, the neuropeptides orcokinin, RFamide and allatostatin, and the biogenic amine serotonin. Our study reveals an unexpected level of structural complexity, unmatched by what is found in the insect olfactory glomeruli. Peptidergic and aminergic interneurons provide the structural basis for a regionalization of the crustacean glomeruli into longitudinal and concentric compartments. Our data suggest that local olfactory interneurons take a central computational role in modulating the information transfer from olfactory sensory neurons to projection neurons within the glomeruli. Furthermore, we found yet unknown neuronal elements mediating lateral inhibitory interactions across the glomerular array that may play a central role in modulating the transfer of sensory input to the output neurons through presynaptic inhibition. Our study is another step in understanding the function of crustacean olfactory glomeruli as highly complex units of local olfactory processing. 
  •  
4.
  • Homberg, Uwe, et al. (författare)
  • Orcokinin in the central complex of the locust Schistocerca gregaria : Identification of immunostained neurons and colocalization with other neuroactive substances
  • 2021
  • Ingår i: Journal of Comparative Neurology. - : Wiley. - 0021-9967 .- 1096-9861. ; 529:8, s. 1876-1894
  • Tidskriftsartikel (refereegranskat)abstract
    • The central complex is a group of highly interconnected neuropils in the insect brain. It is involved in the control of spatial orientation, based on external compass cues and various internal needs. The functional and neurochemical organization of the central complex has been studied in detail in the desert locust Schistocerca gregaria. In addition to classical neurotransmitters, immunocytochemistry has provided evidence for a major contribution of neuropeptides to neural signalling within the central complex. To complement these data, we have identified all orcokinin‐immunoreactive neurons in the locust central complex and associated brain areas. About 50 bilateral pairs of neurons innervating all substructures of the central complex exhibit orcokinin immunoreactivity. Among these were about 20 columnar neurons, 33 bilateral pairs of tangential neurons of the central body, and seven pairs of tangential neurons of the protocerebral bridge. In silico transcript analysis suggests the presence of eight different orcokinin‐A type peptides in the desert locust. Double label experiments showed that all orcokinin‐immunostained tangential neurons of the lateral accessory lobe cluster were also immunoreactive for GABA and the GABA‐synthesizing enzyme glutamic acid decarboxylase. Two types of tangential neurons of the upper division of the central body were, furthermore, also labeled with an antiserum against Dip‐allatostatin I. No colocalization was found with serotonin immunostaining. The data provide additional insights into the neurochemical organization of the locust central complex and suggest that orcokinin‐peptides of the orcokinin‐A gene act as neuroactive substances at all stages of signal processing in this brain area.
  •  
5.
  • Johard, Helena A D, et al. (författare)
  • Peptidergic clock neurons in Drosophila : ion transport peptide and short neuropeptide F in subsets of dorsal and ventral lateral neurons
  • 2009
  • Ingår i: The Journal of comparative neurology. - : Wiley. - 1096-9861 .- 0021-9967. ; 516:1, s. 59-73
  • Tidskriftsartikel (refereegranskat)abstract
    • About 150 clock neurons are clustered in different groups in the brain of Drosophila. Among these clock neurons, some pigment-dispersing factor (PDF)-positive and PDF-negative lateral neurons (LNs) are principal oscillators responsible for bouts of activity in the morning and evening, respectively. The full complement of neurotransmitters in these morning and evening oscillators is not known. By using a screen for candidate neuromediators in clock neurons, we discovered ion transport peptide (ITP) and short neuropeptide F (sNPF) as novel neuropeptides in subpopulations of dorsal (LN(d)s) and ventral (s-LN(v)s) LNs. Among the six LN(d)s, ITP was found in one that coexpresses long neuropeptide F (NPF) and cryptochrome. We detected sNPF in two LN(d)s that also express cryptochrome; these cells are distinct from three LN(d)s expressing NPF. Thus, we have identified neuropeptides in five of the six LN(d)s. The three LN(d)s expressing cryptochrome, with either ITP or sNPF, are the only ones with additional projections to the accessory medulla. Among the five s-LN(v)s in the adult brain, ITP was detected in the fifth neuron that is devoid of PDF and sNPF in the four neurons that also express PDF. By using a choline acetyltransferase (Cha) Gal4, we detected Cha expression in the two sNPF producing LN(d)s and in the fifth s-LN(v). In the larval brain, two of the four PDF-producing s-LN(v)s coexpress sNPF. Our findings emphasize that the LN(d)s are heterogeneous both anatomically and with respect to content of neuropeptides, cryptochrome, and other markers and suggest diverse functions of these neurons.
  •  
6.
  • Mayer, Georg, et al. (författare)
  • Evolution of pigment-dispersing factor neuropeptides in panarthropoda : Insights from onychophora (Velvet Worms) and tardigrada (Water Bears)
  • 2015
  • Ingår i: Journal of Comparative Neurology. - : Wiley. - 0021-9967 .- 1096-9861. ; 523:13, s. 1865-1885
  • Tidskriftsartikel (refereegranskat)abstract
    • Pigment-dispersing factor (PDF) denotes a conserved family of homologous neuropeptides present in several invertebrate groups, including mollusks, nematodes, insects and crustaceans (referred to here as pigment-dispersing hormone, PDH). Regarding their encoding genes (pdf, pdh), insects possess only one, nematodes two, and decapod crustaceans up to three, but their phylogenetic relationship is unknown. To shed light on the origin and diversification of pdf/pdh homologs in Panarthropoda (Onychophora + Tardigrada + Arthropoda) and other molting animals (Ecdysozoa), we analyzed the transcriptomes of five distantly related onychophorans and a representative tardigrade and searched for putative pdf homologs in publically available genomes of other protostomes. This revealed only one pdf homolog in several mollusk and annelid species, two in Onychophora, Priapulida and Nematoda, and three in Tardigrada. Phylogenetic analyses suggest that the last common ancestor of Panarthropoda possessed two pdf homologs, one of which was lost in the arthropod or arthropod/tardigrade lineage, followed by subsequent duplications of the remaining homolog in some taxa. Immunolocalization of PDF-like peptides in six onychophoran species, using a broadly reactive antibody that recognizes PDF/PDH peptides in numerous species, revealed an elaborate system of neurons and fibers in their central and peripheral nervous systems. Large varicose projections in the heart suggest that the PDF neuropeptides functioned as both circulating hormones and locally released transmitters in the last common ancestor of Onychophora and Arthropoda. The lack of PDF-like immunoreactive somata associated with the onychophoran optic ganglion conforms to the hypothesis that onychophoran eyes are homologous to the arthropod median ocelli.
  •  
7.
  • Ollivaux, Céline, et al. (författare)
  • Enkephalinergic control of the secretory activity of neurons producing stereoisomers of crustacean hyperglycemic hormone in the eyestalk of the crayfish Orconectes limosus.
  • 2002
  • Ingår i: Journal of Comparative Neurology. - 0021-9967 .- 1096-9861. ; 444:1, s. 1-9
  • Tidskriftsartikel (refereegranskat)abstract
    • A subgroup of neurons in the classical X organ sinus gland neuroendocrine system of the crayfish (Orconectes limosus) eyestalk produces two chiral forms of the crustacean hyperglycemic hormone (CHH) in two different types of neurons: CHH in 22 cells and D Phe(3) CHH in eight cells. Previous reports have demonstrated that release of CHH from the sinus gland is inhibited by enkephalins. Here, we have addressed the questions of 1) whether this inhibition affects one or both types of CHH neurons, 2) where the site of enkephalinergic control of CHH and/or D Phe(3) CHH is, and 3) whether the inhibitory effect is due to direct or indirect interactions of enkephalinergic neurons with CHH cells. In vitro incubations of neurosecretory complexes followed by immunoassays of CHH isoforms indicated that both methionine and leucine enkephalins inhibit release of the two CHH isoforms from crayfish eyestalks, by a receptor mediated process. Whole mount double or triple immunofluorescence labelings combined with confocal microscopy revealed enkephalin immunostaining in all neuropils of the eyestalk, except in the sinus gland. Virtual thin confocal sections showed many close appositions between terminals of enkephalinergic neurons and dendritic arborizations of specific CHH immunoreactive cells in the medulla terminalis neuropil. This provides the first evidence for direct inputs from enkephalinergic neurons into dendrites of both CHH cell types, which suggests that enkephalins inhibit release of both CHH isoforms via synaptic contacts.
  •  
8.
  • Trube, A, et al. (författare)
  • Crustacean cardioactive peptide-immunoreactive neurons in the ventral nervous system of crayfish.
  • 1994
  • Ingår i: Journal of Comparative Neurology. - : Wiley. - 0021-9967 .- 1096-9861. ; 348:1, s. 80-93
  • Tidskriftsartikel (refereegranskat)abstract
    • Crustacean cardioactive peptide-immunoreactive neurons have been mapped in whole-mount preparations and sections of the ventral nervous system of the crayfish Astacus astacus and Orconectes limosus. Based on their morphology, projection patterns, and staining characteristics, two types of contralaterally projecting neurons are individually identifiable. In both species, these neurons occur in all neuromers as apparent serial homologs. In adult specimens, one type of cell has a small, densely stained dorsal lateral perikaryon, and a descending axon, and appears to be an interneuron. Each neuromer contains a single pair of these cells. Only in maxillary ganglia, these cells may have an additional ascending projection. The other type, a neurosecretory cell, has a larger, weakly stained perikaryon and a projection to the segmental third root of the next anterior neuromer. All neuromers contain a single pair of these neurons adjacent to the interneurons except for the abdominal neuromers, which contain two pairs of the neurosecretory cells. Central arborizations and varicose processes toward the surface of the third roots and within the perineural sheath of the ventral nerve cord arise from these neurons. Electron microscopy of granule-containing terminals substantiated that these newly discovered extensive neurohemal areas are release sites for the peptide. In young immature specimens, the perikarya of both neuron types do not differ in size. Additional weakly stained small perikarya occur in all neuromers of Astacus astacus. These two types of crayfish neurons and other comparable aminergic and peptidergic neurons of crayfish and lobster are differentially distributed in the ventral cord. Furthermore, comparison of similar neuron types in crab, locust, meal worm, and moth species indicates intra- and interphyletic structural homologies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy