SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0022 2836 OR L773:1089 8638 ;pers:(von Heijne Gunnar)"

Sökning: L773:0022 2836 OR L773:1089 8638 > Von Heijne Gunnar

  • Resultat 1-10 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Emanuelsson, Olof, et al. (författare)
  • In silico prediction of the peroxisomal proteome in fungi, plants and animals.
  • 2003
  • Ingår i: Journal of Molecular Biology. - 0022-2836 .- 1089-8638. ; 330:2, s. 443-456
  • Tidskriftsartikel (refereegranskat)abstract
    • In an attempt to improve our abilities to predict peroxisomal proteins, we have combined machine-learning techniques for analyzing peroxisomal targeting signals (PTS1) with domain-based cross-species comparisons between eight eukaryotic genomes. Our results indicate that this combined approach has a significantly higher specificity than earlier attempts to predict peroxisomal localization, without a loss in sensitivity. This allowed us to predict 430 peroxisomal proteins that almost completely lack a localization annotation. These proteins can be grouped into 29 families covering most of the known steps in all known peroxisomal pathways. In general, plants have the highest number of predicted peroxisomal proteins, and fungi the smallest number.
  •  
2.
  • Cymer, Florian, et al. (författare)
  • Mechanisms of Integral Membrane Protein Insertion and Folding
  • 2015
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 427:5, s. 999-1022
  • Forskningsöversikt (refereegranskat)abstract
    • The biogenesis, folding, and structure of alpha-helical membrane proteins (MPs) are important to understand because they underlie virtually all physiological processes in cells including key metabolic pathways, such as the respiratory chain and the photosystems, as well as the transport of solutes and signals across membranes. Nearly all MPs require translocons-often referred to as protein-conducting channels-for proper insertion into their target membrane. Remarkable progress toward understanding the structure and functioning of translocons has been made during the past decade. Here, we review and assess this progress critically. All available evidence indicates that MPs are equilibrium structures that achieve their final structural states by folding along thermodynamically controlled pathways. The main challenge for cells is the targeting and membrane insertion of highly hydrophobic amino acid sequences. Targeting and insertion are managed in cells principally by interactions between ribosomes and membrane-embedded translocons. Our review examines the biophysical and biological boundaries of MP insertion and the folding of polytopic MPs in vivo. A theme of the review is the under-appreciated role of basic thermodynamic principles in MP folding and assembly. Thermodynamics not only dictates the final folded structure but also is the driving force for the evolution of the ribosome-translocon system of assembly. We conclude the review with a perspective suggesting a new view of translocon-guided MP insertion. (C) 2014 Elsevier Ltd. All rights reserved.
  •  
3.
  • Enquist, Karl, et al. (författare)
  • Membrane-integration characteristics of two ABC transporters, CFTR and P-glycoprotein
  • 2009
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 387:5, s. 1153-1164
  • Tidskriftsartikel (refereegranskat)abstract
    • To what extent do corresponding transmembrane helices in related integral membrane proteins have different membrane-insertion characteristics? Here, we compare, side-by-side, the membrane insertion characteristics of the 12 transmembrane helices in the adenosine triphosphate-binding cassette (ABC) transporters, P-glycoprotein (P-gp) and the cystic fibrosis transmembrane conductance regulator (CFTR). Our results show that 10 of the 12 CFTR transmembrane segments can insert independently into the ER membrane. In contrast, only three of the P-gp transmembrane segments are independently stable in the membrane, while the majority depend on the presence of neighboring loops and/or transmembrane segments for efficient insertion. Membrane-insertion characteristics can thus vary widely between related proteins.
  •  
4.
  • Hedin, Linnea E., et al. (författare)
  • Membrane Insertion of Marginally Hydrophobic Transmembrane Helices Depends on Sequence Context
  • 2010
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 396:1, s. 221-229
  • Tidskriftsartikel (refereegranskat)abstract
    • In mammalian cells, most integral membrane proteins are initially inserted into the endoplasmic reticulum membrane by the so-called Sec61 translocon. However, recent predictions suggest that many transmembrane helices (TMHs) in multispanning membrane proteins are not sufficiently hydrophobic to be recognized as such by the translocon. In this study, we have screened 16 marginally hydrophobic TMHs from membrane proteins of known three-dimensional structure. Indeed, most of these TMHs do not insert efficiently into the endoplasmic reticulum membrane by themselves. To test if loops or TMHs immediately upstream or downstream of a marginally hydrophobic helix might influence the insertion efficiency, insertion of marginally hydrophobic helices was also studied in the presence of their neighboring loops and helices. The results show that flanking loops and nearest-neighbor TMHs are sufficient to ensure the insertion of many marginally hydrophobic helices. However, for at least two of the marginally hydrophobic helices, the local interactions are not enough, indicating that post-insertional rearrangements are involved in the folding of these proteins.
  •  
5.
  • Hessa, Tara, et al. (författare)
  • Analysis of transmembrane helix integration in the endoplasmic reticulum in S. cerevisiae
  • 2009
  • Ingår i: Journal of molecular biology. - : Elsevier BV. - 1089-8638 .- 0022-2836. ; 386:5, s. 1222-8
  • Tidskriftsartikel (refereegranskat)abstract
    • What sequence features in integral membrane proteins determine which parts of the polypeptide chain will form transmembrane alpha-helices and which parts will be located outside the lipid bilayer? Previous studies on the integration of model transmembrane segments into the mammalian endoplasmic reticulum (ER) have provided a rather detailed quantitative picture of the relation between amino acid sequence and membrane-integration propensity for proteins targeted to the Sec61 translocon. We have now carried out a comparative study of the integration of N out-C in-orientated 19-residue-long polypeptide segments into the ER of the yeast Saccharomyces cerevisiae. We find that the 'threshold hydrophobicity' required for insertion into the ER membrane is very similar in S. cerevisiae and in mammalian cells. Further, when comparing the contributions to the apparent free energy of membrane insertion of the 20 natural amino acids between the S. cerevisiae and the mammalian ER, we find that the two scales are strongly correlated but that the absolute difference between the most hydrophobic and most hydrophilic residues is approximately 2-fold smaller in S. cerevisiae.
  •  
6.
  • Kauko, Anni, et al. (författare)
  • Repositioning of transmembrane alpha-helices during membrane protein folding
  • 2010
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 397:1, s. 190-201
  • Tidskriftsartikel (refereegranskat)abstract
    • We have determined the optimal placement of individual transmembrane helices in the Pyrococcus horikoshii Glt(Ph) glutamate transporter homolog in the membrane. The results are in close agreement with theoretical predictions based on hydrophobicity, but do not, in general, match the known three-dimensional structure, suggesting that transmembrane helices can be repositioned relative to the membrane during folding and oligomerization. Theoretical analysis of a database of membrane protein structures provides additional support for this idea. These observations raise new challenges for the structure prediction of membrane proteins and suggest that the classical two-stage model often used to describe membrane protein folding needs to be modified.
  •  
7.
  • Kemp, Grant, et al. (författare)
  • Force-Profile Analysis of the Cotranslational Folding of HemK and Filamin Domains : Comparison of Biochemical and Biophysical Folding Assays
  • 2019
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 431:6, s. 1308-1314
  • Tidskriftsartikel (refereegranskat)abstract
    • We have characterized the cotranslational folding of two small protein domains of different folds-the alpha-helical N-terminal domain of HemK and the beta-rich FLN5 filamin domain-by measuring the force that the folding protein exerts on the nascent chain when located in different parts of the ribosome exit tunnel (force-profile analysis, or FPA), allowing us to compare FPA to three other techniques currently used to study cotranslational folding: real-time FRET, photo induced electron transfer, and NMR. We find that FPA identifies the same cotranslational folding transitions as do the other methods, and that these techniques therefore reflect the same basic process of cotranslational folding in similar ways.
  •  
8.
  • Lloris-Garcerá, Pilar, et al. (författare)
  • In Vivo Trp Scanning of the Small Multidrug Resistance Protein EmrE Confirms 3D Structure Models
  • 2013
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 425:22, s. 4642-4651
  • Tidskriftsartikel (refereegranskat)abstract
    • The quaternary structure of the homodimeric small multidrug resistance protein EmrE has been studied intensely over the past decade. Structural models derived from both two- and three-dimensional crystals show EmrE as an anti-parallel homodimer. However, the resolution of the structures is rather low and their relevance for the in vivo situation has been questioned. Here, we have challenged the available structural models by a comprehensive in vivo Trp scanning of all four transmembrane helices in EmrE. The results are in close agreement with the degree of lipid exposure of individual residues predicted from coarse-grained molecular dynamics simulations of the anti-parallel dimeric structure obtained by X-ray crystallography, strongly suggesting that the X-ray structure provides a good representation of the active in vivo form of EmrE.
  •  
9.
  • Lloris-Garcerá, Pilar, et al. (författare)
  • Why Have Small Multidrug Resistance Proteins Not Evolved into Fused, Internally Duplicated Structures?
  • 2014
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 426:11, s. 2246-2254
  • Tidskriftsartikel (refereegranskat)abstract
    • The increasing number of solved membrane protein structures has led to the recognition of a common feature in a large fraction of the small-molecule transporters: inverted repeat structures, formed by two fused homologous membrane domains with opposite orientation in the membrane. An evolutionary pathway in which the ancestral state is a single gene encoding a dual-topology membrane protein capable of forming antiparallel homodimers has been posited. A gene duplication event enables the evolution of two oppositely orientated proteins that form antiparallel heterodimers. Finally, fusion of the two genes generates an internally duplicated transporter with two oppositely orientated membrane domains. Strikingly, however, in the small multidrug resistance (SMR) family of transporters, no fused, internally duplicated proteins have been found to date. Here, we have analyzed fused versions of the dual-topology transporter EmrE, a member of the SMR family, by blue-native PAGE and in vivo activity measurements. We find that fused constructs give rise to both intramolecular inverted repeat structures and competing intermolecular dimers of varying activity. The formation of several intramolecularly and intermolecularly paired species indicates that a gene fusion event may lower the overall amount of active protein, possibly explaining the apparent absence of fused SMR proteins in nature.
  •  
10.
  • Nilsson, IngMarie, et al. (författare)
  • The Code for Directing Proteins for Trans location across ER Membrane : SRP Cotranslationally Recognizes Specific Features of a Signal Sequence
  • 2015
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 427:6, s. 1191-1201
  • Tidskriftsartikel (refereegranskat)abstract
    • The signal recognition particle (SRP) cotranslationally recognizes signal sequences of secretory proteins and targets ribosome-nascent chain complexes to the SRP receptor in the endoplasmic reticulum membrane, initiating translocation of the nascent chain through the Sec61 translocon. Although signal sequences do not have homology, they have similar structural regions: a positively charged N-terminus, a hydrophobic core and a more polar C-terminal region that contains the cleavage site for the signal peptidase. Here, we have used site-specific photocrosslinking to study SRP signal sequence interactions. A photoreactive probe was incorporated into the middle of wild-type or mutated signal sequences of the secretory protein preprolactin by in vitro translation of mRNAs containing an amber-stop codon in the signal peptide in the presence of the N-epsilon-(5-azido-2 nitrobenzoyl)-Lys-tRNA(amb) amber suppressor. A homogeneous population of SRP ribosome-nascent chain complexes was obtained by the use of truncated mRNAs in translations performed in the presence of purified canine SRP. Quantitative analysis of the photoadducts revealed that charged residues at the N-terminus of the signal sequence or in the early part of the mature protein have only a mild effect on the SRP signal sequence association. However, deletions of amino acid residues in the hydrophobic portion of the signal sequence severely affect SRP binding. The photocrosslinking data correlate with targeting efficiency and translocation across the membrane. Thus, the hydrophobic core of the signal sequence is primarily responsible for its recognition and binding by SRP, while positive charges fine-tune the SRP signal sequence affinity and targeting to the translocon.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 29

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy