SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0022 538X OR L773:1098 5514 "

Sökning: L773:0022 538X OR L773:1098 5514

  • Resultat 1-10 av 474
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Agback, Peter, et al. (författare)
  • NAP1L1 and NAP1L4 Binding to Hypervariable Domain of Chikungunya Virus nsP3 Protein Is Bivalent and Requires Phosphorylation
  • 2021
  • Ingår i: Journal of Virology. - 0022-538X .- 1098-5514. ; 95
  • Tidskriftsartikel (refereegranskat)abstract
    • Chikungunya virus (CHIKV) is one of the most pathogenic members of the Alphavirus genus in the Togaviridae family. Within the last 2 decades, CHIKV has expanded its presence to both hemispheres and is currently circulating in both Old and New Worlds. Despite the severity and persistence of the arthritis it causes in humans, no approved vaccines or therapeutic means have been developed for CHIKV infection. Replication of alphaviruses, including CHIKV, is determined not only by their nonstructural proteins but also by a wide range of host factors, which are indispensable components of viral replication complexes (vRCs). Alphavirus nsP3s contain hypervariable domains (HVDs), which encode multiple motifs that drive recruitment of cell- and virus-specific host proteins into vRCs. Our previous data suggested that NAP1 family members are a group of host factors that may interact with CHIKV nsP3 HVD. In this study, we performed a detailed investigation of the NAP1 function in CHIKV replication in vertebrate cells. Our data demonstrate that (i) the NAP1-HVD interactions have strong stimulatory effects on CHIKV replication, (ii) both NAP1L1 and NAP1L4 interact with the CHIKV HVD, (iii) NAP1 family members interact with two motifs, which are located upstream and downstream of the G3BP-binding motifs of CHIKV HVD, (iv) NAP1 proteins interact only with a phosphorylated form of CHIKV HVD, and HVD phosphorylation is mediated by CK2 kinase, and (v) NAP1 and other families of host factors redundantly promote CHIKV replication and their bindings have additive stimulatory effects on viral replication.IMPORTANCE Cellular proteins play critical roles in the assembly of alphavirus replication complexes (vRCs). Their recruitment is determined by the viral nonstructural protein 3 (nsP3). This protein contains a long, disordered hypervariable domain (HVD), which encodes virus-specific combinations of short linear motifs interacting with host factors during vRC assembly. Our study defined the binding mechanism of NAP1 family members to CHIKV HVD and demonstrated a stimulatory effect of this interaction on viral replication. We show that interaction with NAP1L1 is mediated by two HVD motifs and requires phosphorylation of HVD by CK2 kinase. Based on the accumulated data, we present a map of the binding motifs of the critical host factors currently known to interact with CHIKV HVD. It can be used to manipulate cell specificity of viral replication and pathogenesis, and to develop a new generation of vaccine candidates.
  •  
2.
  • Agback, Tatiana, et al. (författare)
  • Structural and Functional Characterization of Host FHL1 Protein Interaction with Hypervariable Domain of Chikungunya Virus nsP3 Protein
  • 2021
  • Ingår i: Journal of Virology. - 0022-538X .- 1098-5514. ; 95
  • Tidskriftsartikel (refereegranskat)abstract
    • Decades of insufficient control have resulted in unprecedented spread of chikungunya virus (CHIKV) around the globe, and millions have suffered from the highly debilitating disease. Nevertheless, the current understanding of CHIKV-host interactions and adaptability of the virus to replication in mosquitoes and mammalian hosts is still elusive. Our new study shows that four-and-a-half LIM domain protein (FHL1) is one of the host factors that interact with the hypervariable domain (HVD) of CHIKV nsP3. Unlike G3BPs, FHL1 is not a prerequisite of CHIKV replication, and many commonly used cell lines do not express FHL1. However, its expression has a detectable stimulatory effect(s) on CHIKV replication, and Fhl1 knockout (KO) cell lines demonstrate slower infection spread. Nuclear magnetic resonance (NMR)-based studies revealed that the binding site of FHL1 in CHIKV nsP3 HVD overlaps that of another proviral host factor, CD2AP. The structural data also demonstrated that FHL1-HVD interaction is mostly determined by the LIM1 domain of FHL1. However, it does not mirror binding of the entire protein, suggesting that other LIM domains are involved. In agreement with previously published data, our biological experiments showed that interactions of CHIKV HVD with CD2AP and FHL1 have additive effects on the efficiency of CHIKV replication. This study shows that CHIKV mutants with extensive modifications of FHL1or both FHL1and CD2AP-binding sites remain viable and develop spreading infection in multiple cell types. Our study also demonstrated that other members of the FHL family can bind to CHIKV HVD and thus may be involved in viral replication.IMPORTANCE Replication of chikungunya virus (CHIKV) is determined by a wide range of host factors. Previously, we have demonstrated that the hypervariable domain (HVD) of CHIKV nsP3 contains linear motifs that recruit defined families of host proteins into formation of functional viral replication complexes. Now, using NMRbased structural and biological approaches, we have characterized the binding site of the cellular FHL1 protein in CHIKV HVD and defined the biological significance of this interaction. In contrast to previously described binding of G3BP to CHIKV HVD, the FHL1-HVD interaction was found to not be a prerequisite of viral replication. However, the presence of FHL1 has a stimulatory effect on CHIKV infectivity and, subsequently, the infection spread. FHL1 and CD2AP proteins were found to have overlapping binding sites in CHIKV HVD and additive proviral functions. Elimination of the FHL1-binding site in the nsP3 HVD can be used for the development of stable, attenuated vaccine candidates.
  •  
3.
  • Allain, J. P., et al. (författare)
  • Evolutionary rate and genetic drift of hepatitis C virus are not correlated with the host immune response : Studies of infected donor-recipient clusters
  • 2000
  • Ingår i: Journal of Virology. - 0022-538X .- 1098-5514. ; 74:6, s. 2541-2549
  • Tidskriftsartikel (refereegranskat)abstract
    • Six donor-recipient clusters of hepatitis C virus (HCV)-infected individuals were studied. For five clusters the period of infection of the donor could be estimated, and for all six clusters the time of infection of the recipients from the donor via blood transfusion was also precisely known. Detailed phylogenetic analyses were carried out to investigate the genomic evolution of the viral quasispecies within infected individuals in each cluster. The molecular clock analysis showed that HCV quasispecies within a patient are evolving at the same rate and that donors that have been infected for longer time tend to have a lower evolutionary rate. Phylogenetic analysis based on the split decomposition method revealed different evolutionary patterns in different donor-recipient clusters. Reactivity of antibody against the first hypervariable region (HVR1) of HCV in donor and recipient sera was evaluated and correlated to the calculated evolutionary rate. Results indicate that anti-HVR1 reactivity was related more to the overall level of humoral immune response of the host than to the HVR1 sequence itself, suggesting that the particular sequence of the HVR1 peptides is not the determinant of reactivity. Moreover, no correlation was found between the evolutionary rate or the heterogeneity of the viral quasispecies in the patients and the strength of the immune response to HVR1 epitopes, Rather, the results seem to imply that genetic drift is less dependent on immune pressure than on the rate of evolution and that the genetic drift of HCV is independent of the host immune pressure.
  •  
4.
  • Andersson, I., et al. (författare)
  • Human MxA Protein Inhibits the Replication of Crimean-Congo Hemorrhagic Fever Virus
  • 2004
  • Ingår i: Journal of Virology. - 0022-538X .- 1098-5514. ; 78:8, s. 4323-4329
  • Tidskriftsartikel (refereegranskat)abstract
    • Crimean-Congo hemorrhagic fever virus (CCHFV) belongs to the genus Nairovirus within the family Bunyaviridae and is the causative agent of severe hemorrhagic fever. Despite increasing knowledge about hemorrhagic fever viruses, the factors determining their pathogenicity are still poorly understood. The interferon-induced MxA protein has been shown to have an inhibitory effect on several members of the Bunyaviridae family, but the effect of MxA against CCHFV has not previously been studied. Here, we report that human MxA has antiviral activity against CCHFV. The yield of progeny virus in cells constitutively expressing MxA was reduced up to 1,000-fold compared with control cells, and accumulation of viral genomes was blocked. Confocal microscopy revealed that MxA colocalizes with the nucleocapsid protein (NP) of CCHFV in the perinuclear regions of infected cells. Furthermore, we found that MxA interacted with NP by using a coimmunoprecipitation assay. We also found that an amino acid substitution (E645R) within the C-terminal domain of MxA resulted in a loss of MxA antiviral activity and, concomitantly, in the capacity to interact with CCHFV NP. These results suggest that MxA, by interacting with a component of the nucleocapsid, prevents replication of CCHFV viral RNA and thereby inhibits the production of new infectious virus particles.
  •  
5.
  •  
6.
  •  
7.
  • Arnberg, Niklas, et al. (författare)
  • Adenovirus type 37 uses sialic acid as a cellular receptor
  • 2000
  • Ingår i: Journal of Virology. - 0022-538X .- 1098-5514. ; 74:1, s. 42-48
  • Tidskriftsartikel (refereegranskat)abstract
    • Two cellular receptors for adenovirus, coxsackievirus-adenovirus receptor (CAR) and major histocompatibility complex class I (MHC-I) alpha2, have recently been identified. In the absence of CAR, MHC-I alpha2 has been suggested to serve as a cellular attachment protein for subgenus C adenoviruses, while members from all subgenera except subgenus B have been shown to interact with CAR. We have found that adenovirus type 37 (Ad37) attachment to CAR-expressing CHO cells was no better than that to CHO cells lacking CAR expression, suggesting that CAR is not used by Ad37 during attachment. Instead, we have identified sialic acid as a third adenovirus receptor moiety. First, Ad37 attachment to both CAR-expressing CHO cells and MHC-I alpha2-expressing Daudi cells was sensitive to neuraminidase treatment, which eliminates sialic acid on the cell surface. Second, Ad37 attachment to sialic acid-expressing Pro-5 cells was more than 10-fold stronger than that to the Pro-5 subline Lec2, which is deficient in sialic acid expression. Third, neuraminidase treatment of A549 cells caused a 60% decrease in Ad37 replication in a fluorescent-focus assay. Moreover, the receptor sialoconjugate is most probably a glycoprotein rather than a ganglioside, since Ad37 attachment to sialic acid-expressing Pro-5 cells was sensitive to protease treatment. Ad37 attachment to Pro-5 cells occurs via alpha(2-->3)-linked sialic acid saccharides rather than alpha(2-->6)-linked ones, since (i) alpha(2-->3)-specific but not alpha(2-->6)-specific lectins blocked Ad37 attachment to Pro-5 cells and (ii) pretreatment of Pro-5 cells with alpha(2-->3)-specific neuraminidase resulted in decreased Ad37 binding. Taken together, these results suggest that, unlike Ad5, Ad37 makes use of alpha(2-->3)-linked sialic acid saccharides on glycoproteins for entry instead of using CAR or MHC-I alpha2.
  •  
8.
  • Arnberg, Niklas, et al. (författare)
  • Adenovirus type 37 uses sialic acid as a cellular receptor on Chang C cells
  • 2002
  • Ingår i: Journal of Virology. - : American Society for Microbiology. - 0022-538X .- 1098-5514. ; 76:17, s. 8834-8841
  • Tidskriftsartikel (refereegranskat)abstract
    • Epidemic keratoconjunctivitis (EKC) is a severe eye infection caused mainly by adenovirus type 8 (Ad8), Ad19, and Ad37. We have shown that the EKC-causing adenoviruses use sialic acid as a cellular receptor on A549 cells instead of the coxsackie-adenovirus receptor, which is used by most adenoviruses. Recently, Wu et al. (Virology 279:78-89, 2001) proposed that Ad37 uses a 50-kDa protein as a receptor on Chang C conjunctival cells and that this interaction is independent of sialic acid. According to the American Type Culture Collection, this cell line carries HeLa cell markers and should be considered to be a genital cell line. This prompted us to investigate the function of sialic acid as a cellular receptor for Ad37 in Chang C cells. In this study, we demonstrate that enzymatic removal or lectin-mediated blocking of cell surface sialic acid inhibits the binding of Ad37 virions to Chang C cells, as does soluble, virion-interacting sialic acid-containing substances. The binding was Ca2+ or Mg2+ ion independent and mediated by the knob domain of the trimeric viral fiber polypeptide. Moreover, Ad37 virions infected Chang C cells and two other genital cell lines (HeLa and SiHa) as well as a corneal cell line in a strictly sialic acid-dependent manner. From these results, we conclude that Ad37 uses sialic acid as a major receptor in cell lines derived from both genital and corneal tissues.
  •  
9.
  • Arnberg, Niklas, et al. (författare)
  • Initial interactions of subgenus D adenoviruses with A549 cellular receptors : sialic acid versus alpha(v) integrins
  • 2000
  • Ingår i: Journal of Virology. - 0022-538X .- 1098-5514. ; 74:16, s. 7691-3
  • Tidskriftsartikel (refereegranskat)abstract
    • Selected members of the adenovirus family have been shown to interact with the coxsackie adenovirus receptor, alpha(v) integrins, and sialic acid on target cells. Initial interactions of subgenus D adenoviruses with target cells have until now been poorly characterized. Here, we demonstrate that adenovirus type 8 (Ad8), Ad19a, and Ad37 use sialic acid as a functional cellular receptor, whereas the Ad9 and Ad19 prototypes do not.
  •  
10.
  • Ashokkumar, M., et al. (författare)
  • Unique phenotypic characteristics of recently transmitted HIV-1 subtype C envelope glycoprotein gp120 : Use of CXCR6 coreceptor by transmitted founder viruses
  • 2018
  • Ingår i: Journal of Virology. - : American Society for Microbiology. - 0022-538X .- 1098-5514. ; 92:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Adequate information on the precise molecular and biological composition of the viral strains that establish HIV infection in the human host will provide effective means of immunization against HIV infection. In an attempt to identify the transmitted founder (TF) virus and differentiate the biological properties and infectious potential of the TF virus from those of the population of the early transmitted viruses, 250 patient-derived gp120 envelope glycoproteins were cloned in pMN-K7- Luc-IRESs-NefΔgp120 to obtain chimeric viruses. Samples were obtained from eight infants who had recently become infected with HIV through mother-to-child transmission (MTCT) and two adults who acquired infection through the heterosexual route and were in the chronic stage of infection. Among the 250 clones tested, 65 chimeric viruses were infectious, and all belonged to HIV-1 subtype C. The 65 clones were analyzed for molecular features of the envelope, per-infectious-particle infectivity, coreceptor tropism, drug sensitivity, and sensitivity to broadly neutralizing antibodies. Based on genotypic and phenotypic analysis of the viral clones, we identified 10 TF viruses from the eight infants. The TF viruses were characterized by shorter V1V2 regions, a reduced number of potential N-linked glycosylation sites, and a higher infectivity titer compared to the virus variants from the adults in the chronic stage of infection. CXCR6 coreceptor usage, in addition to that of the CCR5 coreceptor, which was used by all 65 chimeric viruses, was identified in 13 viruses. The sensitivity of the TF variants to maraviroc and a standard panel of neutralizing monoclonal antibodies (VRC01, PG09, PG16, and PGT121) was found to be much lower than that of the virus variants from the adults in the chronic stage of infection.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 474
Typ av publikation
tidskriftsartikel (472)
annan publikation (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (457)
övrigt vetenskapligt/konstnärligt (17)
Författare/redaktör
Garoff, H (20)
Liljestrom, P (19)
Arnberg, Niklas (16)
Soderberg-Naucler, C (15)
Albert, J. (13)
Mirazimi, A (13)
visa fler...
Sallberg, M (11)
Hedestam, GBK (11)
Wadell, Göran (11)
Akusjärvi, Göran (10)
McInerney, GM (10)
Lundkvist, A (9)
Bergström, Tomas, 19 ... (8)
Merits, A (8)
Överby, Anna K. (8)
Mascola, JR (8)
Wallin, M (8)
aut (7)
Xing, L (7)
Cheng, RH (7)
Klingstrom, J (7)
Svensson, Lennart (7)
Wyatt, RT (7)
Frängsmyr, Lars (7)
Schwartz, S (7)
Sjoberg, M (7)
Svensson, L (6)
Blomberg, Jonas (6)
Douagi, I (6)
Lore, K (6)
Ekstrom, M. (6)
Lindberg, A Michael (6)
Tan, W. (6)
Broliden, K (6)
Vaheri, A (5)
Hecht, FM (5)
Fenyö, Eva Maria (5)
Klein, G (5)
Liljeqvist, Jan-Åke, ... (5)
Orvell, C (5)
Karlsson, A. (5)
Thorstensson, R (5)
Esteban, M (5)
Leitner, T (5)
FENYO, EM (5)
Pettersson, RF (5)
Plyusnin, A (5)
Feng, Y. (5)
Norberg, Peter, 1974 (5)
Klenerman, P (5)
visa färre...
Lärosäte
Karolinska Institutet (272)
Uppsala universitet (64)
Umeå universitet (50)
Lunds universitet (40)
Göteborgs universitet (35)
Linköpings universitet (22)
visa fler...
Sveriges Lantbruksuniversitet (14)
Linnéuniversitetet (12)
Stockholms universitet (10)
Kungliga Tekniska Högskolan (2)
Chalmers tekniska högskola (2)
Högskolan i Halmstad (1)
Örebro universitet (1)
Mittuniversitetet (1)
visa färre...
Språk
Engelska (473)
Odefinierat språk (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (127)
Naturvetenskap (43)
Lantbruksvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy