SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0024 3590 OR L773:1939 5590 ;pers:(Berggren Martin)"

Sökning: L773:0024 3590 OR L773:1939 5590 > Berggren Martin

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berggren, Martin, 1981-, et al. (författare)
  • Aging of allochthonous organic carbon regulates bacterial production in unproductive boreal lakes
  • 2009
  • Ingår i: Limnology and Oceanography. - : Wiley. - 0024-3590 .- 1939-5590. ; 54:4, s. 1333-1342
  • Tidskriftsartikel (refereegranskat)abstract
    • We calculated average aquatic dissolved organic carbon (DOC) age (the time span from soil discharge to observation) in water from the inlets and outlets of two unproductive Swedish lakes at different times during an annual cycle. Bacterial production (BP) and bacterial growth efficiency (BGE) determined during 7-d bioassays decreased with increasing average aquatic DOC age. Parallel to the declines in BP and BGE there was a rise in specific ultraviolet absorbance at the wavelength of 254 nm (SUVA254), which indicates that decreasing BP and BGE were connected to a shift to a more aromatic and recalcitrant DOC pool. The relationships between bacterial metabolism and DOC age were stronger after a Q10 correction of the DOC age, showing that temperature affected rates of DOC quality changes over time and should be taken into account when relating lake bacterial growth to substrate aging in natural environments. We propose that hydrological variability in combination with lake size (water renewal time) have a large influence on pelagic BP in lakes with high input of terrigenous DOC.
  •  
2.
  • Berggren, Martin, et al. (författare)
  • Nutrient limitation masks the dissolved organic matter composition effects on bacterial metabolism in unproductive freshwaters
  • 2023
  • Ingår i: Limnology and Oceanography. - : John Wiley & Sons. - 0024-3590 .- 1939-5590. ; 68:9, s. 2059-2069
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquatic microbial responses to changes in the amount and composition of dissolved organic carbon (DOC) are of fundamental ecological and biogeochemical importance. Parallel factor (PARAFAC) analysis of excitation–emission fluorescence spectra is a common tool to characterize DOC, yet its ability to predict bacterial production (BP), bacterial respiration (BR), and bacterial growth efficiency (BGE) vary widely, potentially because inorganic nutrient limitation decouples microbial processes from their dependence on DOC composition. We used 28-d bioassays with water from 19 lakes, streams, and rivers in northern Sweden to test how much the links between bacterial metabolism and fluorescence PARAFAC components depend on experimental additions of inorganic nutrients. We found a significant interaction effect between nutrient addition and fluorescence on carbon-specific BP, and weak evidence for influence on BGE by the same interaction (p = 0.1), but no corresponding interaction effect on BR. A practical implication of this interaction was that fluorescence components could explain more than twice as much of the variability in carbon-specific BP (R2 = 0.90) and BGE (R2 = 0.70) after nitrogen and phosphorus addition, compared with control incubations. Our results suggest that an increased supply of labile DOC relative to ambient phosphorus and nitrogen induces gradually larger degrees of nutrient limitation of BP, which in turn decouple BP and BGE from fluorescence signals. Thus, while fluorescence does contain precise information about the degree to which DOC can support microbial processes, this information may be hidden in field studies due to nutrient limitation of bacterial metabolism.
  •  
3.
  • Berggren, Martin, et al. (författare)
  • Systematic microbial production of optically active dissolved organic matter in subarctic lake water
  • 2020
  • Ingår i: Limnology and Oceanography. - : Association for the Sciences of Limnology and Oceanography (ASLO). - 0024-3590 .- 1939-5590. ; 65:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The ecology and biogeochemistry of lakes in the subarctic region are particularly sensitive to changes in the abundance and optical properties of dissolved organic matter (DOM). External input of colored DOM to these lakes is an extensively researched topic, but little is known about potential reciprocal feedbacks between the optical properties of DOM and internal microbial processes in the water. We performed 28-day dark laboratory incubation trials on water from 101 subarctic tundra lakes in northern Sweden, measuring the microbial decay of DOM and the resulting dynamics in colored (CDOM) and fluorescent (FDOM) DOM components. While losses in dissolved oxygen during the incubations corresponded to a 20% decrease in mean DOM, conversely the mean CDOM and total FDOM increased by 22% and 30%, respectively. However, the patterns in microbial transformation of the DOM were not the same in all lakes. Notably, along the gradient of increasing ambient CDOM (water brownness), the lakes showed decreased microbial production of protein-like fluorescence, lowered DOM turnover rates and decreasing bacterial growth per unit of DOM. These trends indicate that browning of subarctic lakes systematically change the way that bacteria interact with the ambient DOM pool. Our study underscores that there is no unidirectional causal link between microbial processes and DOM optical properties, but rather reciprocal dependence between the two.
  •  
4.
  • Garnier, Aurélie, et al. (författare)
  • Coastal darkening exacerbates eutrophication symptoms through bottom-up and top-down control modification
  • 2023
  • Ingår i: Limnology and Oceanography. - : Wiley. - 1939-5590 .- 0024-3590. ; 68:3, s. 678-691
  • Tidskriftsartikel (refereegranskat)abstract
    • Coastal eutrophication due to excessive anthropogenic nutrient loading is a major threat worldwide, and especially in estuaries and semi-enclosed waterbodies, like the brackish Baltic Sea. In addition, coastal waters may become darker (coastal darkening) due to increased input of colored compounds from terrestrial run-off and sediment resuspension. Still, the effects of darkening on coastal food web responses to eutrophication are unknown. In a mesocosm experiment with benthic and pelagic habitats, we manipulated nutrient loading, presence of fish and light availability to disentangle bottom-up and top-down control of eutrophication symptoms in ambient and darkened waters. Overall, we found higher pelagic Chlorophyll a concentrations (a proxy of algal biomass) with darkening and with nutrient enrichment in both clear and dark waters. Albeit fish had a strong impact on zooplankton and zoobenthos, they had no cascading effect on algae. We conclude that coastal darkening due to changes in land use and climate change can pose an additional challenge concerning the recovery of coastal waters from eutrophication.
  •  
5.
  • Jansson, Mats, et al. (författare)
  • Bioavailable phosphorus in humic headwater streams in boreal Sweden
  • 2012
  • Ingår i: Limnology and Oceanography. - : Wiley. - 1939-5590 .- 0024-3590. ; 57:4, s. 1161-1170
  • Tidskriftsartikel (refereegranskat)abstract
    • Bioavailable phosphorus (BAP) concentrations were determined nine times between April and October 2010 in two humic boreal headwater streams draining forest-and mire-dominated catchments. BAP was analyzed in a bioassay in which natural P-limited bacterioplankton grew with natural P as the sole P source. In both streams, approximately 90% of the BAP occurred as dissolved species (passing a 0.2-mu m filter), consisting partly of low-molecular-weight forms (passing a filter with nominal cutoff at 1 kDa) and partly of high-molecular-weight forms (passing a 0.2-mu m filter but not a 1-kDa filter). Concentrations of total dissolved BAP varied between 1 mu g L-1 and 14 mu g L-1, with the highest values in the middle of the summer. Compared to the forest stream, BAP concentrations were generally higher in the mire stream, where it occasionally amounted to nearly 50% of total P. Molybdate reactive phosphorus overestimated BAP considerably. Most of the BAP was in forms other than free orthophosphate. Temporal BAP variations showed no relationships with dissolved organic carbon (C) or iron but were positively related to air temperature and negatively related to the absorbance ratio (a254 : a365) of organic compounds in the water, indicating connections between terrestrial export of BAP and temperature-dependent terrestrial C metabolism. Concentrations of BAP can relieve stream bacteria from P limitation, and a significant share of BAP exported to streams can reach and be used in downstream lakes.
  •  
6.
  • Karlsson, Jan, et al. (författare)
  • Response to Comment: Terrestrial support of pelagic consumers in unproductive lakes : uncertainty and potential in assessments using stable isotopes
  • 2014
  • Ingår i: Limnology and Oceanography. - : Wiley. - 1939-5590 .- 0024-3590. ; 59:5, s. 1800-1803
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of stable carbon isotopes (d13C) has played a key role in estimation of the proportion of aquatic consumer biomass derived from terrestrial organic matter (OM; i.e., allochthony; Meili et al. 1996; Grey et al. 2001; Pace et al. 2004). However, the use of d13C for assessing allochthony has shortcomings because of the small natural separation between terrestrial and aquatic isotopic end members and the difficulty in physically separating autotrophic phytoplankton for d13C analysis from other components of particulate organic carbon (POC). These shortcomings are especially problematic in unproductive lakes where the phytoplankton are dominated by small and mixotrophic species, and where the internal photosynthesis is low compared to the input of terrestrial OM (Algesten et al. 2004; Jansson et al. 2008). Several alternative analyses and approaches have been tested to overcome these methodological limitations, including compound-specific analyses of phytoplankton biomarkers (Pace et al. 2007; Van Den Meersche et al. 2009; Berggren et al. 2014), manipulation of phytoplankton d13C by addition of 13C-labeled dissolved inorganic carbon (Pace et al. 2004; Taipale et al. 2008), addition of 13C-enriched OM (Karlsson et al. 2007; Bartels et al. 2012), and various mass balance and modeling approaches (Marty and Planas 2008; Mohamed and Taylor 2009; Berggren et al. 2010). Still, a generally applicable method is lacking, implying that the problems with assessing d13C of phytoplankton is a major limitation in the use of d13C for estimating allochthony with the accuracy needed for detailed understanding of food web dynamics.
  •  
7.
  • Karlsson, Jan, et al. (författare)
  • Terrestrial organic matter support of lake food webs : Evidence from lake metabolism and stable hydrogen isotopes of consumers
  • 2012
  • Ingår i: Limnology and Oceanography. - : Wiley. - 0024-3590 .- 1939-5590. ; 57:4, s. 1042-1048
  • Tidskriftsartikel (refereegranskat)abstract
    • We quantified the utilization of terrestrial organic matter (OM) in the food web of a humic lake by analyzing the metabolism and the consumers' stable isotopic (C, H, N) composition in benthic and pelagic habitats. Terrestrial OM inputs (3 g C m(-2) d(-1)) to the lake greatly exceeded autochthonous OM production (3 mg C m(-2) d(-1)) in the lake. Heterotrophic bacterial growth (19 mg C m(-2) d(-1)) and community respiration (115 mg C m(-2) d(-1)) were high relative to algal photosynthesis and were predominantly (> 85%) supported by terrestrial OM in both habitats. Consequently, terrestrial OM fueled most (85%) of the total production at the base of the lake's food web (i.e., the sum of primary and bacterial production). Despite the uncertainties of quantitatively estimating resource use based on stable isotopes, terrestrial OM clearly also supported around half the zooplankton (47%), macrozoobenthos (63%), and fish (57%) biomass. These results indicate that, although rates of terrestrial OM inputs were around three orders of magnitude greater than that of autochthonous OM production, the use of the two resources by higher trophic levels was roughly equal. The disproportionally low reliance on terrestrial OM at higher trophic levels, compared with its high rates of input and high support of basic biomass production in the lake, suggests that autochthonous resources could not be completely replaced by terrestrial resources and indicates an upper limit to terrestrial support of lake food webs.
  •  
8.
  • Rulli, Mayra, et al. (författare)
  • Seasonal patterns in nutrient bioavailability in boreal headwater streams
  • 2022
  • Ingår i: Limnology and Oceanography. - : Wiley. - 1939-5590 .- 0024-3590. ; , s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Changes in nutrient bioavailability due to increased loading of dissolved organic matter (DOM) may impact boreal freshwaters. Yet, the relative bioavailability of carbon (C), nitrogen (N), and phosphorus (P) associated with terrestrial DOM remains poorly understood. We applied short-term bioassays with natural bacterial inocula to determine seasonal variation in bioavailable organic nutrient pools from four boreal headwater streams in northern Sweden. Experiments were designed to exhaust bioavailable nutrients associated with DOM by inducing limiting conditions when all required resources except for the targeted nutrient (C, N, or P) are provided in excess. We hypothesized that the supply of different bioavailable nutrients to streams would reflect seasonal variations in terrestrial demand, hydrology, and temperature. The delivery of bioavailable DOM-associated resources from the four streams were, on average, 2%, 11%, and 38% of the total dissolved organic C, N, and P, respectively, emphasizing the relatively low C bioavailability in these DOM-rich waters. Bioavailable N : P ratios peaked in autumn for all sites, with lower values in winter and spring. Both in terms of relative (% of total) and absolute bioavailable organic nutrient concentrations, the seasonal pattern was characterized by systematically high values for the autumn period. Furthermore, links between bioavailable resources and temperature and hydrology varied across sites, time periods, and the different elements. Thus, elevated concentrations of bioavailable organic resources in autumn suggest the potential for leaf fall, as well as late season storms that rewet dry soils, to serve as considerable sources of C, N, and P to boreal aquatic ecosystems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy