SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0024 3590 OR L773:1939 5590 ;pers:(Bergström Ann kristin)"

Sökning: L773:0024 3590 OR L773:1939 5590 > Bergström Ann kristin

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berggren, Martin, et al. (författare)
  • Nutrient limitation masks the dissolved organic matter composition effects on bacterial metabolism in unproductive freshwaters
  • 2023
  • Ingår i: Limnology and Oceanography. - : John Wiley & Sons. - 0024-3590 .- 1939-5590. ; 68:9, s. 2059-2069
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquatic microbial responses to changes in the amount and composition of dissolved organic carbon (DOC) are of fundamental ecological and biogeochemical importance. Parallel factor (PARAFAC) analysis of excitation–emission fluorescence spectra is a common tool to characterize DOC, yet its ability to predict bacterial production (BP), bacterial respiration (BR), and bacterial growth efficiency (BGE) vary widely, potentially because inorganic nutrient limitation decouples microbial processes from their dependence on DOC composition. We used 28-d bioassays with water from 19 lakes, streams, and rivers in northern Sweden to test how much the links between bacterial metabolism and fluorescence PARAFAC components depend on experimental additions of inorganic nutrients. We found a significant interaction effect between nutrient addition and fluorescence on carbon-specific BP, and weak evidence for influence on BGE by the same interaction (p = 0.1), but no corresponding interaction effect on BR. A practical implication of this interaction was that fluorescence components could explain more than twice as much of the variability in carbon-specific BP (R2 = 0.90) and BGE (R2 = 0.70) after nitrogen and phosphorus addition, compared with control incubations. Our results suggest that an increased supply of labile DOC relative to ambient phosphorus and nitrogen induces gradually larger degrees of nutrient limitation of BP, which in turn decouple BP and BGE from fluorescence signals. Thus, while fluorescence does contain precise information about the degree to which DOC can support microbial processes, this information may be hidden in field studies due to nutrient limitation of bacterial metabolism.
  •  
2.
  • Deininger, Anne, et al. (författare)
  • Pelagic food web response to whole lake N fertilization
  • 2017
  • Ingår i: Limnology and Oceanography. - : Wiley. - 0024-3590 .- 1939-5590. ; 62:4, s. 1498-1511
  • Tidskriftsartikel (refereegranskat)abstract
    • Anthropogenic activities are increasing inorganic nitrogen (N) loadings to unproductive boreal lakes. In many of these lakes phytoplankton are N limited, consequently N fertilization may affect ecosystem productivity and consumer resource use. Here, we conducted whole lake inorganic N fertilization experiments with six small N limited unproductive boreal lakes (three control and three N enriched) in an area receiving low N deposition with one reference and two impact years. Our aim was to assess the effects of N fertilization on pelagic biomass production and consumer resource use. We found that phytoplankton primary production (PP) and biomass, and the PP: bacterioplankton production ratio increased after fertilization. As expected, the relative contribution of phytoplankton derived resources (autochthony) that supported the crustacean zooplankton community increased. Yet, the response in the consumer community was modest with autochthony only increasing in one of the three major zooplankton groups and with no effect on zooplankton biomass. In conclusion, our findings imply that newly available phytoplankton energy derived from N fertilization was not efficiently transferred up to zooplankton, indicating a mismatch between producer energy supply and consumer energy use with potential accumulation of phytoplankton biomass as the result.
  •  
3.
  • Faithfull, Carolyn, et al. (författare)
  • Effects of nutrients and physical lake characteristics on bacterial and phytoplankton production : A meta-analysis
  • 2011
  • Ingår i: Limnology and Oceanography. - : American Society of Limnology and Oceanography (ASLO). - 0024-3590 .- 1939-5590. ; 56:5, s. 1703-1713
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed a meta-analysis comprising field (300 studies) and experimental data (249 studies) from a widerange of lake trophic states and locations. We examined the effects of nitrogen (N), phosphorus (P), carbon(dissolved organic matter [DOM]), temperature, latitude, and lake morphometry on the absolute and relative ratesof phytoplankton primary production (PPr) and secondary bacterial production (BP). Areal and volumetric rates ofPPr, BP, and BP : PPr were compared, and we analyzed differences between experimental and natural systems. Bothfield studies and experimental results showed agreement with regard to N and P as predictors of volumetric PPr andBP, respectively, despite the large variation in study duration, size, and nutrient addition rates in experimentalsystems. This indicates that bacteria and phytoplankton do not seem to be competing for the same nutrients. Arealmeasurements were more difficult to predict and were more dependent on physical lake characteristics thannutrients. Temperature was positively correlated with PPr, but not with BP. BP: PPr was stable across experimentsregardless of N, P, DOM, or glucose additions. In contrast, BP : PPr ratios varied greatly in the field data set andwere highest in systems with low total N and at high latitudes. This pattern was driven by reduced PPr, not BP;therefore, experimenters may need to manipulate PPr to change BP: PPr. Collectively, our results indicate thatincreased temperatures and N availability will lead to higher PPr and lower BP : PPr, potentially decreasing theimportance of energy mobilized through the microbial food web on a global scale.
  •  
4.
  • Jansson, Mats, et al. (författare)
  • Nutrient limitation of bacterioplankton, autotrophic and mixotrophic phytoplankton, and heterotrophic nanoflagellates in Lake Örträsket
  • 1996
  • Ingår i: Limnology and Oceanography. - 0024-3590 .- 1939-5590. ; 41:7, s. 1552-1559
  • Tidskriftsartikel (refereegranskat)abstract
    • Enrichment experiments with P and N were conducted in humic Lake Örträsket in northern Sweden. The composition of the microplankton community showed a dominance by bacterioplankton, followed by mixotrophic sind potentially mixotrophic phytoplankton, heterotrophic nanoflagellates, and autotrophic phytoplankton. Bacterioplankton was P limited for most of the ice-free period, and phytoplankton biomass and primary production mostly increased after enrichment with N, but not with P. The dominant group of phytoplankton, the mixotrophic flagellates, was stimulated by N bur not by P, while obligate autotrophic species were stimulated only by P+N. It is suggested that N limitation in mixotrophic species is induced by grazing of P-rich bacteria. The results suggest that primary productivity in humic lakes can be limited by N and indicate the importance of phagocytosis as a means of nutrition in phytoplankton. A link is suggested to exist in humic lakes whereby heterotrophic bacterioplankton, which use humic compounds as their principal energy source, can transfer energy and nutrients to potentially autotrophic organisms, with subsequent utilization by other components of the food web.
  •  
5.
  • Jonsson, Anders, et al. (författare)
  • Whole-lake mineralization of allochthonous and autochthonous organic carbon in a large humic lake (Örträsket, N. Sweden)
  • 2001
  • Ingår i: Limnology and Oceanography. - : Wiley. - 0024-3590 .- 1939-5590. ; 46:7, s. 1691-1700
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic carbon mineralization was studied. in a large humic lake (Lake Örträsket) in northern Sweden during a well-defined summer stratification period following high water flow during snowmelt. Several independent methods including plankton counts, measurements of bacterioplankton and phytoplankton production, stable isotope monitoring, sediment trapping, and mass balance calculations were used. Total organic carbon mineralization showed a summer mean of 0.3 g C m(-2) d(-1) and was partitioned about equally between water and sediment. In the water column, organic matter was mineralized by bacteria (60%) and protozoan and metazoan zooplankton (30%), as well as by photooxidation (10%). Most of the mineralized organic carbon was of allochthonous origin. Primary production in the lake contributed at most 5% of the total organic carbon input and about 20% of the total organic carbon mineralization. Total carbon mineralization in. the epilimnion and metalimnion agreed well with an estimate of CO2 evasion from the stratified lake, while CO2 accumulation in the hypolimnion matched the O-2 consumption and resulted in a very negative delta C-13 of DIC before autumn overturn (-23 parts per thousand). Isotopic compositions of DIC and POC confirmed the dominant influence of terrestrial organic input on the cycling of both organic and inorganic carbon in the lake.
  •  
6.
  • Klaus, Marcus, 1988-, et al. (författare)
  • Weak response of greenhouse gas emissions to whole lake N enrichment
  • 2018
  • Ingår i: Limnology and Oceanography. - : Wiley. - 0024-3590 .- 1939-5590. ; 63, s. S340-S353
  • Tidskriftsartikel (refereegranskat)abstract
    • Global warming and land use scenarios suggest increased 21st century nitrogen (N) inputs to aquatic systems. Nitrogen affects in-lake processing and, potentially, atmospheric exchange of greenhouse gases, probably being most relevant in unproductive systems. Here, we test for the first time the effect of a whole-lake experimental increase (threefold) in external nitrate loads on the atmospheric exchange of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) from N-limited unproductive boreal lakes. Nitrate enrichment effects were assessed within a paired Before/After-Control/Impact framework based on 2-hourly to biweekly surface-water sampling of dissolved gas concentrations, and monthly whole-lake inventory surveys, carried out over 4 yrs in six lakes. Nitrate enrichment did not affect gas exchange during summer stratification and whole-lake gas inventories during summer and winter stratification. This finding specifically emphasizes the modest role of internal carbon fixation for the CO2 dynamics of unproductive boreal lakes. A global synthesis of 52 published studies revealed a wide range of nutrient fertilization effects, both in systems similar to our experimental lakes, and other more productive systems. Effects depended mainly on the spatiotemporal scale of the study and became more pronounced when N enrichment was combined with phosphorous. Conclusively, although short-term and habitat-specific effects can occur, changes in N supply have only weak whole-ecosystem effects on greenhouse gas emissions from unproductive boreal lakes.
  •  
7.
  • Rulli, Mayra, et al. (författare)
  • Seasonal patterns in nutrient bioavailability in boreal headwater streams
  • 2022
  • Ingår i: Limnology and Oceanography. - : Wiley. - 1939-5590 .- 0024-3590. ; , s. 1-15
  • Tidskriftsartikel (refereegranskat)abstract
    • Changes in nutrient bioavailability due to increased loading of dissolved organic matter (DOM) may impact boreal freshwaters. Yet, the relative bioavailability of carbon (C), nitrogen (N), and phosphorus (P) associated with terrestrial DOM remains poorly understood. We applied short-term bioassays with natural bacterial inocula to determine seasonal variation in bioavailable organic nutrient pools from four boreal headwater streams in northern Sweden. Experiments were designed to exhaust bioavailable nutrients associated with DOM by inducing limiting conditions when all required resources except for the targeted nutrient (C, N, or P) are provided in excess. We hypothesized that the supply of different bioavailable nutrients to streams would reflect seasonal variations in terrestrial demand, hydrology, and temperature. The delivery of bioavailable DOM-associated resources from the four streams were, on average, 2%, 11%, and 38% of the total dissolved organic C, N, and P, respectively, emphasizing the relatively low C bioavailability in these DOM-rich waters. Bioavailable N : P ratios peaked in autumn for all sites, with lower values in winter and spring. Both in terms of relative (% of total) and absolute bioavailable organic nutrient concentrations, the seasonal pattern was characterized by systematically high values for the autumn period. Furthermore, links between bioavailable resources and temperature and hydrology varied across sites, time periods, and the different elements. Thus, elevated concentrations of bioavailable organic resources in autumn suggest the potential for leaf fall, as well as late season storms that rewet dry soils, to serve as considerable sources of C, N, and P to boreal aquatic ecosystems.
  •  
8.
  • Seekell, David A., et al. (författare)
  • The influence of dissolved organic carbon on primary production in northern lakes
  • 2015
  • Ingår i: Limnology and Oceanography. - : John Wiley & Sons. - 0024-3590 .- 1939-5590. ; 60:4, s. 1276-1285
  • Tidskriftsartikel (refereegranskat)abstract
    • Dissolved organic carbon (DOC) concentrations in lakes are changing globally, but little is known about potential ecosystem impacts.We evaluated the relationship between DOC and whole-lake primary production in arctic and boreal lakes. Both light extinction (inhibits primary production) and nutrient availability (stimulates primary production) are positively and nonlinearly related to DOC concentration. These nonlinearities create a threshold DOC concentration (4.8mg L-1), below which the DOC-primary production relationship is positive, and above which the relationship is negative. DOC concentration varies maximally between regions, creating a unimodal relationship between primary production and DOC that emerges at broader scales because arctic lakes largely fall below the threshold DOC concentration, but boreal lakes fall above it. Our analysis suggests that the impact of DOC trends on lake primary production will vary across lakes and regions as a result of contrasting baseline conditions relative to the DOC threshold.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy