SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0024 3590 OR L773:1939 5590 ;pers:(Giesler Reiner)"

Sökning: L773:0024 3590 OR L773:1939 5590 > Giesler Reiner

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Myrstener, Maria, et al. (författare)
  • Nutrients influence seasonal metabolic patterns and total productivity of Arctic streams
  • 2021
  • Ingår i: Limnology and Oceanography. - : John Wiley & Sons. - 0024-3590 .- 1939-5590. ; 66:S1, s. S182-S196
  • Tidskriftsartikel (refereegranskat)abstract
    • The seasonality of gross primary production (GPP) in streams is driven by multiple physical and chemical factors, yet incident light is often thought to be most important. In Arctic tundra streams, however, light is available in saturating amounts throughout the summer, but sharp declines in nutrient supply during the terrestrial growing season may constrain aquatic productivity. Given the opposing seasonality of these drivers, we hypothesized that "shoulder seasons"-spring and autumn-represent critical time windows when light and nutrients align to optimize rates of stream productivity in the Arctic. To test this, we measured annual patterns of GPP and biofilm accumulation in eight streams in Arctic Sweden. We found that the aquatic growing season length differed by 4 months across streams and was determined largely by the timing of ice-off in spring. During the growing season, temporal variability in GPP for nitrogen (N) poor streams was correlated with inorganic N concentration, while in more N-rich streams GPP was instead linked to changes in phosphorus and light. Annual GPP varied ninefold among streams and was enhanced by N availability, the length of ice-free period, and low flood frequency. Finally, network scale estimates of GPP highlight the overall significance of the shoulder seasons, which accounted for 48% of annual productivity. We suggest that the timing of ice off and nutrient supply from land interact to regulate the annual metabolic regimes of nutrient poor, Arctic streams, leading to unexpected peaks in productivity that are offset from the terrestrial growing season.
  •  
2.
  • Rocher-Ros, Gerard, et al. (författare)
  • Metabolism overrides photo-oxidation in CO2 dynamics of Arctic permafrost streams
  • 2021
  • Ingår i: Limnology and Oceanography. - : John Wiley & Sons. - 0024-3590 .- 1939-5590. ; 66:S1, s. S169-S181
  • Tidskriftsartikel (refereegranskat)abstract
    • Global warming is enhancing the mobilization of organic carbon (C) from Arctic soils into streams, where it can be mineralized to CO2 and released to the atmosphere. Abiotic photo‐oxidation might drive C mineralization, but this process has not been quantitatively integrated with biological processes that also influence CO2 dynamics in aquatic ecosystems. We measured CO2 concentrations and the isotopic composition of dissolved inorganic C (δ13CDIC) at diel resolution in two Arctic streams, and coupled this with whole‐system metabolism estimates to assess the effect of biotic and abiotic processes on stream C dynamics. CO2 concentrations consistently decreased from night to day, a pattern counter to the hypothesis that photo‐oxidation is the dominant source of CO2. Instead, the observed decrease in CO2 during daytime was explained by photosynthetic rates, which were strongly correlated with diurnal changes in δ13CDIC values. However, on days when modeled photosynthetic rates were near zero, there was still a significant diel change in δ13CDIC values, suggesting that metabolic estimates are partly masked by O2 consumption from photo‐oxidation. Our results suggest that 6–12 mmol CO2‐C m−2 d−1 may be generated from photo‐oxidation, a range that corresponds well to previous laboratory measurements. Moreover, ecosystem respiration rates were 10 times greater than published photo‐oxidation rates for these Arctic streams, and accounted for 33–80% of total CO2 evasion. Our results suggest that metabolic activity is the dominant process for CO2 production in Arctic streams. Thus, future aquatic CO2 emissions may depend on how biotic processes respond to the ongoing environmental change.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2
Typ av publikation
tidskriftsartikel (2)
Typ av innehåll
refereegranskat (2)
Författare/redaktör
Rocher-Ros, Gerard (2)
Sponseller, Ryan A. (2)
Harms, Tamara K. (1)
Väisänen, Maria (1)
Mörth, Carl-Magnus (1)
visa fler...
Myrstener, Maria (1)
Gomez-Gener, Lluis (1)
visa färre...
Lärosäte
Umeå universitet (2)
Stockholms universitet (1)
Språk
Engelska (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (2)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy