SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:0028 0836 OR L773:1476 4687 srt2:(2010-2019);srt2:(2014);lar1:(lu)"

Search: L773:0028 0836 OR L773:1476 4687 > (2010-2019) > (2014) > Lund University

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • D'Alisa, Giacomo, et al. (author)
  • Rethink Campania's toxic-waste scandal
  • 2014
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 509:7501, s. 427-427
  • Journal article (peer-reviewed)
  •  
3.
  • Lindgren, Johan, et al. (author)
  • Skin pigmentation provides evidence of convergent melanism in extinct marine reptiles.
  • 2014
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 506:7489, s. 484-484
  • Journal article (peer-reviewed)abstract
    • Throughout the animal kingdom, adaptive colouration serves critical functions ranging from inconspicuous camouflage to ostentatious sexual display, and can provide important information about the environment and biology of a particular organism. The most ubiquitous and abundant pigment, melanin, also has a diverse range of non-visual roles, including thermoregulation in ectotherms. However, little is known about the functional evolution of this important biochrome through deep time, owing to our limited ability to unambiguously identify traces of it in the fossil record. Here we present direct chemical evidence of pigmentation in fossilized skin, from three distantly related marine reptiles: a leatherback turtle, a mosasaur and an ichthyosaur. We demonstrate that dark traces of soft tissue in these fossils are dominated by molecularly preserved eumelanin, in intimate association with fossilized melanosomes. In addition, we suggest that contrary to the countershading of many pelagic animals, at least some ichthyosaurs were uniformly dark-coloured in life. Our analyses expand current knowledge of pigmentation in fossil integument beyond that of feathers, allowing for the reconstruction of colour over much greater ranges of extinct taxa and anatomy. In turn, our results provide evidence of convergent melanism in three disparate lineages of secondarily aquatic tetrapods. Based on extant marine analogues, we propose that the benefits of thermoregulation and/or crypsis are likely to have contributed to this melanisation, with the former having implications for the ability of each group to exploit cold environments.
  •  
4.
  • Northcott, Paul A, et al. (author)
  • Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma.
  • 2014
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 511:7510, s. 428-428
  • Journal article (peer-reviewed)abstract
    • Medulloblastoma is a highly malignant paediatric brain tumour currently treated with a combination of surgery, radiation and chemotherapy, posing a considerable burden of toxicity to the developing child. Genomics has illuminated the extensive intertumoral heterogeneity of medulloblastoma, identifying four distinct molecular subgroups. Group 3 and group 4 subgroup medulloblastomas account for most paediatric cases; yet, oncogenic drivers for these subtypes remain largely unidentified. Here we describe a series of prevalent, highly disparate genomic structural variants, restricted to groups 3 and 4, resulting in specific and mutually exclusive activation of the growth factor independent 1 family proto-oncogenes, GFI1 and GFI1B. Somatic structural variants juxtapose GFI1 or GFI1B coding sequences proximal to active enhancer elements, including super-enhancers, instigating oncogenic activity. Our results, supported by evidence from mouse models, identify GFI1 and GFI1B as prominent medulloblastoma oncogenes and implicate 'enhancer hijacking' as an efficient mechanism driving oncogene activation in a childhood cancer.
  •  
5.
  • Tobias, Joseph A, et al. (author)
  • Species coexistence and the dynamics of phenotypic evolution in adaptive radiation.
  • 2014
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 506:7488, s. 359-359
  • Journal article (peer-reviewed)abstract
    • Interactions between species can promote evolutionary divergence of ecological traits and social signals, a process widely assumed to generate species differences in adaptive radiation. However, an alternative view is that lineages typically interact when relatively old, by which time selection for divergence is weak and potentially exceeded by convergent selection acting on traits mediating interspecific competition. Few studies have tested these contrasting predictions across large radiations, or by controlling for evolutionary time. Thus the role of species interactions in driving broad-scale patterns of trait divergence is unclear. Here we use phylogenetic estimates of divergence times to show that increased trait differences among coexisting lineages of ovenbirds (Furnariidae) are explained by their greater evolutionary age in relation to non-interacting lineages, and that-when these temporal biases are accounted for-the only significant effect of coexistence is convergence in a social signal (song). Our results conflict with the conventional view that coexistence promotes trait divergence among co-occurring organisms at macroevolutionary scales, and instead provide evidence that species interactions can drive phenotypic convergence across entire radiations, a pattern generally concealed by biases in age.
  •  
6.
  • Wang, Kaituo, et al. (author)
  • Structure and mechanism of Zn2+-transporting P-type ATPases
  • 2014
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 514:7523, s. 518-
  • Journal article (peer-reviewed)abstract
    • Zinc is an essential micronutrient for all living organisms. It is required for signalling and proper functioning of a range of proteins involved in, for example, DNA binding and enzymatic catalysis(1). In prokaryotes and photosynthetic eukaryotes, Zn2+-transporting P-type ATPases of class IB (ZntA) are crucial for cellular redistribution and detoxification of Zn2+ and related elements(2,3). Here we present crystal structures representing the phosphoenzyme ground state (E2P) and a dephosphorylation intermediate (E2.P-i) of ZntA from Shigella sonnei, determined at 3.2 angstrom and 2.7 angstrom resolution, respectively. The structures reveal a similar fold to Cu+-ATPases, with an amphipathic helix at the membrane interface. A conserved electronegative funnel connects this region to the intramembranous high-affinity ion-binding site and may promote specific uptake of cellular Zn2+ ions by the transporter. The E2P structure displays a wide extracellular release pathway reaching the invariant residues at the high-affinity site, including C392, C394 and D714. The pathway closes in the E2.P-i state, in which D714 interacts with the conserved residue K693, which possibly stimulates Zn2+ release as a built-in counter ion, as has been proposed for H+-ATPases. Indeed, transport studies in liposomes provide experimental support for ZntA activity without counter transport. These findings suggest a mechanistic link between P-IB-type Zn2+-ATPases and P-III-type H+-ATPases and at the same time show structural features of the extracellular release pathway that resemble P-II-type ATPases such as the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase(4,5) (SERCA) and Na+, K+-ATPase(6). These findings considerably increase our understanding of zinc transport in cells and represent new possibilities for biotechnology and biomedicine.
  •  
7.
  • Willerslev, E, et al. (author)
  • Fifty thousand years of arctic vegetation change and megafauna diet
  • 2014
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 506:7486, s. 47-47
  • Journal article (peer-reviewed)abstract
    • Although it is generally agreed that the Arctic flora is among the youngest and least diverse on Earth, the processes that shaped it are poorly understood. Here we present 50 thousand years (kyr) of Arctic vegetation history, derived from the first large-scale ancient DNA metabarcoding study of circumpolar plant diversity. For this interval we also explore nematode diversity as a proxy for modelling vegetation cover and soil quality, and diets of herbivorous megafaunal mammals, many of which became extinct around 10 kyr bp (before present). For much of the period investigated, Arctic vegetation consisted of dry steppe-tundra dominated by forbs (non-graminoid herbaceous vascular plants). During the Last Glacial Maximum (25–15 kyr bp), diversity declined markedly, although forbs remained dominant. Much changed after 10 kyr bp, with the appearance of moist tundra dominated by woody plants and graminoids. Our analyses indicate that both graminoids and forbs would have featured in megafaunal diets. As such, our findings question the predominance of a Late Quaternary graminoid-dominated Arctic mammoth steppe.
  •  
8.
  • Metcalfe, Dan (author)
  • A sink down under
  • 2014
  • In: Nature. - 0028-0836. ; 509:7502, s. 566-567
  • Journal article (other academic/artistic)
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view