SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0028 0836 OR L773:1476 4687 srt2:(2010-2019);srt2:(2014);lar1:(slu)"

Sökning: L773:0028 0836 OR L773:1476 4687 > (2010-2019) > (2014) > Sveriges Lantbruksuniversitet

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bonaventure Omondi, Aman, et al. (författare)
  • Evolution of mosquito preference for humans linked to an odorant receptor
  • 2014
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 515, s. 222-227
  • Tidskriftsartikel (refereegranskat)abstract
    • Female mosquitoes are major vectors of human disease and the most dangerous are those that preferentially bite humans. A 'domestic' form of the mosquito Aedes aegypti has evolved to specialize in biting humans and is the main worldwide vector of dengue, yellow fever, and chikungunya viruses. The domestic form coexists with an ancestral, 'forest' form that prefers to bite non-human animals and is found along the coast of Kenya. We collected the two forms, established laboratory colonies, and document striking divergence in preference for human versus non-human animal odour. We further show that the evolution of preference for human odour in domestic mosquitoes is tightly linked to increases in the expression and ligand-sensitivity of the odorant receptor AaegOr4, which we found recognizes a compound present at high levels inhuman odour. Our results provide a rare example of a gene contributing to behavioural evolution and provide insight into how disease-vectoring mosquitoes came to specialize on humans.
  •  
2.
  •  
3.
  • Handa, I. Tanya, et al. (författare)
  • Consequences of biodiversity loss for litter decomposition across biomes
  • 2014
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 509:7499, s. 218-221
  • Tidskriftsartikel (refereegranskat)abstract
    • The decomposition of dead organic matter is a major determinant of carbon and nutrient cycling in ecosystems, and of carbon fluxes between the biosphere and the atmosphere(1-3). Decomposition is driven by a vast diversity of organisms that are structured in complex food webs(2,4). Identifying the mechanisms underlying the effects of biodiversity on decomposition is critical(4-6) given the rapid loss of species worldwide and the effects of this loss on human well-being(7-9). Yet despite comprehensive syntheses of studies on how biodiversity affects litter decomposition(4-6,10), key questions remain, including when, where and how biodiversity has a role and whether general patterns and mechanisms occur across ecosystems and different functional types of organism(4,9-12). Here, in field experiments across five terrestrial and aquatic locations, ranging from the subarctic to the tropics, we show that reducing the functional diversity of decomposer organisms and plant litter types slowed the cycling of litter carbon and nitrogen. Moreover, we found evidence of nitrogen transfer from the litter of nitrogen-fixing plants to that of rapidly decomposing plants, but not between other plant functional types, highlighting that specific interactions in litter mixtures control carbon and nitrogen cycling during decomposition. The emergence of this general mechanism and the coherence of patterns across contrasting terrestrial and aquatic ecosystems suggest that biodiversity loss has consistent consequences for litter decomposition and the cycling of major elements on broad spatial scales.
  •  
4.
  • Price, T. D., et al. (författare)
  • Niche filling slows the diversification of Himalayan songbirds
  • 2014
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 509:7499
  • Tidskriftsartikel (refereegranskat)abstract
    • Speciation generally involves a three-step process-range expansion, range fragmentation and the development of reproductive isolation between spatially separated populations(1,2). Speciation relies on cycling through these three steps and each may limit the rate at which new species form(1,3). We estimate phylogenetic relationships among all Himalayan songbirds to ask whether the development of reproductive isolation and ecological competition, both factors that limit range expansions(4), set an ultimate limit on speciation. Based on a phylogeny for all 358 species distributed along the eastern elevational gradient, here we show that body size and shape differences evolved early in the radiation, with the elevational band occupied by a species evolving later. These results are consistent with competition for niche space limiting species accumulation(5). Even the elevation dimension seems to be approaching ecological saturation, because the closest relatives both inside the assemblage and elsewhere in the Himalayas are on average separated by more than five million years, which is longer than it generally takes for reproductive isolation to be completed(2,3,6); also, elevational distributions are well explained by resource availability, notably the abundance of arthropods, and not by differences in diversification rates in different elevational zones. Our results imply that speciation rate is ultimately set by niche filling(that is, ecological competition for resources), rather than by the rate of acquisition of reproductive isolation.
  •  
5.
  • Wardle, David (författare)
  • Conservation: listen to more voices
  • 2014
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 516, s. 37-37
  • Annan publikation (refereegranskat)
  •  
6.
  • Ågren, Göran, et al. (författare)
  • Temperature sensitivity of soil respiration rates enhanced by microbial community response
  • 2014
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 513, s. 81-84+ figurer
  • Tidskriftsartikel (refereegranskat)abstract
    • Soils store about four times as much carbon as plant biomass(1), and soil microbial respiration releases about 60 petagrams of carbon per year to the atmosphere as carbon dioxide(2). Short-term experiments have shown that soil microbial respiration increases exponentially with temperature(3). This information has been incorporated into soil carbon and Earth-system models, which suggest that warming-induced increases in carbon dioxide release from soils represent an important positive feedback loop that could influence twenty-first-century climate change(4). The magnitude of this feedback remains uncertain, however, not least because the response of soil microbial communities to changing temperatures has the potential to either decrease(5-7) or increase(8,9) warming-induced carbon losses substantially. Here we collect soils from different ecosystems along a climate gradient from the Arctic to the Amazon and investigate how microbial community-level responses control the temperature sensitivity of soil respiration. We find that the microbial community-level response more often enhances than reduces the mid-to long-term (90 days) temperature sensitivity of respiration. Furthermore, the strongest enhancing responses were observed in soils with high carbon-to-nitrogen ratios and in soils from cold climatic regions. After 90 days, microbial community responses increased the temperature sensitivity of respiration in high-latitude soils by a factor of 1.4 compared to the instantaneous temperature response. This suggests that the substantial carbon stores in Arctic and boreal soils could be more vulnerable to climate warming than currently predicted.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy