SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0028 0836 OR L773:1476 4687 srt2:(2010-2019);srt2:(2018);lar1:(cth)"

Sökning: L773:0028 0836 OR L773:1476 4687 > (2010-2019) > (2018) > Chalmers tekniska högskola

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Lindgren, Johan, et al. (författare)
  • Soft-tissue evidence for homeothermy and crypsis in a Jurassic ichthyosaur
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 564:7736
  • Tidskriftsartikel (refereegranskat)abstract
    • Ichthyosaurs are extinct marine reptiles that display a notable external similarity to modern toothed whales. Here we show that this resemblance is more than skin deep. We apply a multidisciplinary experimental approach to characterize the cellular and molecular composition of integumental tissues in an exceptionally preserved specimen of the Early Jurassic ichthyosaur Stenopterygius. Our analyses recovered still-flexible remnants of the original scaleless skin, which comprises morphologically distinct epidermal and dermal layers. These are underlain by insulating blubber that would have augmented streamlining, buoyancy and homeothermy. Additionally, we identify endogenous proteinaceous and lipid constituents, together with keratinocytes and branched melanophores that contain eumelanin pigment. Distributional variation of melanophores across the body suggests countershading, possibly enhanced by physiological adjustments of colour to enable photoprotection, concealment and/or thermoregulation. Convergence of ichthyosaurs with extant marine amniotes thus extends to the ultrastructural and molecular levels, reflecting the omnipresent constraints of their shared adaptation to pelagic life.
  •  
3.
  • Mooley, K., et al. (författare)
  • A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 554:7691, s. 207-210
  • Tidskriftsartikel (refereegranskat)abstract
    • GW170817 was the first gravitational-wave detection of a binary neutron-star merger. It was accompanied by radiation across the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance of 40 megaparsecs. It has been proposed that the observed γ-ray, X-ray and radio emission is due to an ultra-relativistic jet being launched during the merger (and successfully breaking out of the surrounding material), directed away from our line of sight (off-axis). The presence of such a jet is predicted from models that posit neutron-star mergers as the drivers of short hard-γ-ray bursts. Here we report that the radio light curve of GW170817 has no direct signature of the afterglow of an off-axis jet. Although we cannot completely rule out the existence of a jet directed away from the line of sight, the observed γ-ray emission could not have originated from such a jet. Instead, the radio data require the existence of a mildly relativistic wide-angle outflow moving towards us. This outflow could be the high-velocity tail of the neutron-rich material that was ejected dynamically during the merger, or a cocoon of material that breaks out when a jet launched during the merger transfers its energy to the dynamical ejecta. Because the cocoon model explains the radio light curve of GW170817, as well as the γ-ray and X-ray emission (and possibly also the ultraviolet and optical emission), it is the model that is most consistent with the observational data. Cocoons may be a ubiquitous phenomenon produced in neutron-star mergers, giving rise to a hitherto unidentified population of radio, ultraviolet, X-ray and γ-ray transients in the local Universe.
  •  
4.
  • Mooley, K., et al. (författare)
  • Superluminal motion of a relativistic jet in the neutron-star merger GW170817
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 561:7723, s. 355-359
  • Tidskriftsartikel (refereegranskat)abstract
    • The binary neutron-star merger GW1708171was accompanied by radiation across the electromagnetic spectrum2and localized2to the galaxy NGC 4993 at a distance3of about 41 megaparsecs from Earth. The radio and X-ray afterglows of GW170817 exhibited delayed onset4–7, a gradual increase8in the emission with time (proportional to t0.8) to a peak about 150 days after the merger event9, followed by a relatively rapid decline9,10. So far, various models have been proposed to explain the afterglow emission, including a choked-jet cocoon4,8,11–13and a successful-jet cocoon4,8,11–18(also called a structured jet). However, the observational data have remained inconclusive10,15,19,20as to whether GW170817 launched a successful relativistic jet. Here we report radio observations using very long-baseline interferometry. We find that the compact radio source associated with GW170817 exhibits superluminal apparent motion between 75 days and 230 days after the merger event. This measurement breaks the degeneracy between the choked- and successful-jet cocoon models and indicates that, although the early-time radio emission was powered by a wide-angle outflow8(a cocoon), the late-time emission was most probably dominated by an energetic and narrowly collimated jet (with an opening angle of less than five degrees) and observed from a viewing angle of about 20 degrees. The imaging of a collimated relativistic outflow emerging from GW170817 adds substantial weight to the evidence linking binary neutron-star mergers and short γ-ray bursts.
  •  
5.
  • Searchinger, Timothy D., et al. (författare)
  • Assessing the efficiency of changes in land use for mitigating climate change
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 564:7735, s. 249-253
  • Tidskriftsartikel (refereegranskat)abstract
    • Land-use changes are critical for climate policy because native vegetation and soils store abundant carbon and their losses from agricultural expansion, together with emissions from agricultural production, contribute about 20 to 25 per cent of greenhouse gas emissions1,2. Most climate strategies require maintaining or increasing land-based carbon3 while meeting food demands, which are expected to grow by more than 50 per cent by 20501,2,4. A finite global land area implies that fulfilling these strategies requires increasing global land-use efficiency of both storing carbon and producing food. Yet measuring the efficiency of land-use changes from the perspective of greenhouse gas emissions is challenging, particularly when land outputs change, for example, from one food to another or from food to carbon storage in forests. Intuitively, if a hectare of land produces maize well and forest poorly, maize should be the more efficient use of land, and vice versa. However, quantifying this difference and the yields at which the balance changes requires a common metric that factors in different outputs, emissions from different agricultural inputs (such as fertilizer) and the different productive potentials of land due to physical factors such as rainfall or soils. Here we propose a carbon benefits index that measures how changes in the output types, output quantities and production processes of a hectare of land contribute to the global capacity to store carbon and to reduce total greenhouse gas emissions. This index does not evaluate biodiversity or other ecosystem values, which must be analysed separately. We apply the index to a range of land-use and consumption choices relevant to climate policy, such as reforesting pastures, biofuel production and diet changes. We find that these choices can have much greater implications for the climate than previously understood because standard methods for evaluating the effects of land use4–11 on greenhouse gas emissions systematically underestimate the opportunity of land to store carbon if it is not used for agriculture.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy