SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0030 1299 OR L773:1600 0706 ;pers:(Olsson Jens)"

Sökning: L773:0030 1299 OR L773:1600 0706 > Olsson Jens

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liess, Antonia, et al. (författare)
  • Food web complexity affects stoichiometric and trophic interactions
  • 2006
  • Ingår i: Oikos. - : Wiley. - 0030-1299 .- 1600-0706. ; 114:1, s. 117-125
  • Tidskriftsartikel (refereegranskat)abstract
    • The stoichiometry of trophic interactions has mainly been studied in simple consumer–prey systems, whereas natural systems often harbour complex food webs with abundant indirect effects. We manipulated the complexity of trophic interactions by using simple laboratory food webs and complex field food webs in enclosures in Lake Erken. In the simple food web, one producer assemblage (periphyton) and its consumers (benthic snails) were amended by perch, which was externally fed by fish food. In the complex food web, two producer assemblages (periphyton and phytoplankton), their consumers (benthic invertebrates and zooplankton) and perch feeding on zooplankton were included. In the simple food web perch affected the stoichiometry of periphyton and increased periphyton biomass and the concentration of dissolved inorganic nitrogen. Grazers reduced periphyton biomass but increased its nutrient content. In the complex food web, in contrast to the simple food web, perch affected periphyton biomass negatively but increased phytoplankton abundance. Perch had no influence on benthic invertebrate density, zooplankton biomass or periphyton stoichiometry. Benthic grazers reduced periphyton biomass and nutrient content. The difference between the simple and the complex food web was presumably due to the increase of pelagic cyanobacteria (Gloeotrichia sp.) with fish presence in the complex food web, thus fish had indirect negative effects on periphyton biomass through nutrient competition and shading by cyanobacteria. We conclude that the higher food web complexity through the presence of pelagic primary producers (in this case Gloeotrichia sp.) influences the direction and strength of trophic and stoichiometric interactions.
  •  
2.
  • Olsson, Jens, et al. (författare)
  • Growth rate constrain morphological divergence when driven by competition
  • 2006
  • Ingår i: Oikos. - : Wiley. - 0030-1299 .- 1600-0706. ; 115:1, s. 15-22
  • Tidskriftsartikel (refereegranskat)abstract
    • Resource competition has been hypothesized to be important in driving divergence by natural selection. The effect of competition on morphological divergence and plasticity has however rarely been investigated. Since low growth rates might constrain morphological modulation and individual growth rates usually are negatively related to the intensity of competition, there might be a connection between competition, growth rate and morphological divergence. We performed an aquarium experiment with young-of-the-year Eurasian perch (Perca fluviatilis L.) to investigate how individual growth rate affected morphological plasticity induced by contrasting habitat treatments. Furthermore, in a field study of 10 lakes we also related the degree of morphological differentiation between habitats to the intraspecific competitior biomass. In the aquarium experiment we found that morphological plasticity was growth rate dependent in that morphological differentiation between the habitat treatments was confined to high individual growth rates. In the field study we found that morphological differentiation between habitats decreased with increasing intraspecific competitior biomass. Since plasticity is hypothesized to be important in divergence and intraspecific biomass could serve as a proxy for the level of competition, we suggest that our results indicate that morphological divergence might be constrained during periods of intense intraspecific competition due to low growth rates. A possible scenario is that at low growth rates all energy available is used for metabolic maintenance and no surplus energy is therefore available for morphological modulation.
  •  
3.
  • Vrede, Tobias, et al. (författare)
  • Ecological stoichiometry of Eurasian perch : intraspecific variation due to size, habitat and diet
  • 2011
  • Ingår i: Oikos. - : Wiley. - 0030-1299 .- 1600-0706. ; 120:6, s. 886-896
  • Tidskriftsartikel (refereegranskat)abstract
    • The turnover and distribution of energy and nutrients in food webs is influenced by consumer stoichiometry. Although the stoichiometry of heterotrophs is generally considered to vary only little, there may be intraspecific variation due to factors such as habitat, resources, ontogeny and size. We examined intraspecific variation in Eurasian perch Perca fluviatilis stoichiometry, a common species that exhibits habitat and resource specialization, ontogenetic niche shifts and a large size range. This study investigated the elemental stoichiometry of a wide size range of perch from littoral and pelagic habitats. The mean C:N:P stoichiometry of whole perch was 37:9:1 (molar ratios). However, %C, %P, C:N, C:P and N:P varied with size, morphology, habitat and diet category. These factors together explained 24–40% of the variation in C:N:P stoichiometry. In contrast, perch stoichiometry was not related to diet stoichiometry, suggesting that the former is homeostatically regulated. The results suggest that the high P content of perch may result in stoichiometric constraints on the growth of non-piscivorous perch, and that piscivory is an efficient strategy for acquiring P. Resource polymorphism, individual diet specialization and intraspecific size variation are widespread among animals. Thus changes in stoichiometry with size, habitat, morphology and resource use, and therefore also stoichiometric demands, are probably common.
  •  
4.
  • Svensson, Filip, et al. (författare)
  • In situ warming strengthens trophic cascades in a coastal food web
  • 2017
  • Ingår i: Oikos. - : Wiley. - 0030-1299 .- 1600-0706. ; 126:8, s. 1150-1161
  • Tidskriftsartikel (refereegranskat)abstract
    • Global warming may affect most organisms and their interactions. Theory and simple mesocosm experiments suggest that consumer top-down control over primary producer biomass should strengthen with warming, since consumer respiration increases faster with warming than plant photosynthesis. However, these predictions have so far not been tested on natural communities that have experienced warming over many generations. Natural systems display a higher diversity, heterogeneity and complexity than mesocosms, which could alter predicted effects of warming. Here we used an artificially heated part of the northern Baltic Sea (the Forsmark Biotest basin) to test how warming influences trophic interactions in a shallow coastal food web with four trophic levels: omnivorous fish, invertivorous fish, herbivorous invertebrates, and filamentous macroalgae. Monitoring of fish assemblages over six years showed that small invertivorous fish (gobiids, sticklebacks and minnows) were much less abundant in the heated basin than in unheated references areas. Stomach content analyses of the dominating omnivorous fish - Eurasian perch Perca fluviatilis - revealed a strikingly different diet within and outside the Biotest basin; gammarid crustaceans were the dominating prey at heated sites, whereas invertivorous fish (e.g. gobiids) dominated at unheated sites. A 45-day cage experiment showed that fish exclusion did not affect the biomass of algal herbivores (gastropods and gammarids), but reduced algal biomass in heated sites (but not unheated). This suggests that warming induced a trophic cascade from fish to algae, and that this effect was mediated by predator-induced changes in herbivore behavior, rather than number. Overall, our study suggests that warming has effectively compressed the food chain from four to three trophic levels (algae, gammarids and perch), which have benefitted the primary producers by reducing grazing pressure. Consequently, warming appears to have restructured this coastal food web through a combination of direct (physiological) and indirect (species interactions) effects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy