SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0035 8711 OR L773:1365 2966 ;lar1:(liu)"

Sökning: L773:0035 8711 OR L773:1365 2966 > Linköpings universitet

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dieckmann, Mark E, 1969-, et al. (författare)
  • Electron surfing acceleration in oblique magnetic fields
  • 2006
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 367:3, s. 865-872
  • Tidskriftsartikel (refereegranskat)abstract
    • Initially, inhomogeneous plasma jets, ejected by active galactic nuclei and associated with gamma-ray bursts, are thermalized by the formation of internal shocks. Jet subpopulations can hereby collide at Lorentz factors of a few. As the resulting relativistic shock expands into the upstream plasma, a significant fraction of the upstream ions is reflected. These ions, together with downstream ions that leak through the shock, form relativistic beams of ions that outrun the shock. The thermalization of these beams via the two-stream instability is thought to contribute significantly to plasma heating and particle acceleration by the shock. Here, the capability of a two-stream instability to generate relativistic field-aligned and cross-field electron flow, is examined for a magnetized plasma by means of a particle-in-cell (PIC) simulation. The electrons interact with the developing quasi-electrostatic waves and oblique magnetic fields. The simulation results bring forward evidence that such waves, by their non-linear interactions with the plasma, produce a highly relativistic field-aligned electron flow and electron energies, which could contribute to the radio synchrotron emissions from astrophysical jets, to ultrarelativistic leptonic subpopulations propagating with the jet and to the halo particles surrounding the accretion disc of the black hole.
  •  
2.
  • Dieckmann, Mark E, 1969-, et al. (författare)
  • Particle-in-cell simulation studies of the non-linear evolution of ultrarelativistic two-stream instabilities
  • 2006
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 367:3, s. 1072-1082
  • Tidskriftsartikel (refereegranskat)abstract
    • Gamma-ray bursts are associated with relativistic plasma flow and intense X-ray and soft gamma-ray emissions. We perform particle-in-cell simulations to explore the growth and saturation of waves driven by the electrostatic two-stream instability that may contribute to the thermalization of the relativistic plasma flows and to the electromagnetic emissions. We evolve self-consistently the instability driven by two charge-neutral and cool interpenetrating beams of electrons and protons that move at a relative Lorentz factor of 100. We perform three simulations with the beam density ratios of 1, 2 and 10. The simulations show that the electrostatic waves saturate by trapping the electrons of only one beam and that the saturated electrostatic wave fields spatially modulate the mean momentum of the second beam, while retaining its temperature. Cavities form in the charge density of the latter beam which, in turn, compress the electrostatic waves to higher intensities. A runaway process develops that terminates with the collapse of the waves and the development of an exponential electron high-energy tail. We bring forward evidence that this energetic tail interacts stochastically with the charge density fluctuations of the relativistic proton beam. In response, an electron momentum distribution develops that follows an inverse power law up to a spectral break at four times the beam Lorentz factor.
  •  
3.
  • Dieckmann, Mark E, 1969-, et al. (författare)
  • Electrostatic and magnetic instabilities in the transition layer of a collisionless weakly relativistic pair shock
  • 2018
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 473:1, s. 198-209
  • Tidskriftsartikel (refereegranskat)abstract
    • Energetic electromagnetic emissions by astrophysical jets like those that are launched during the collapse of a massive star and trigger gamma-ray bursts are partially attributed to relativistic internal shocks. The shocks are mediated in the collisionless plasma of such jets by the filamentation instability of counterstreaming particle beams. The filamentation instability grows fastest only if the beams move at a relativistic relative speed. We model here with a particle-in-cell simulation, the collision of two cold pair clouds at the speed c/2 (c: speed of light). We demonstrate that the two-stream instability outgrows the filamentation instability for this speed and is thus responsible for the shock formation. The incomplete thermalization of the upstream plasma by its quasi-electrostatic waves allows other instabilities to grow. A shock transition layer forms, in which a filamentation instability modulates the plasma far upstream of the shock. The inflowing upstream plasma is progressively heated by a two-stream instability closer to the shock and compressed to the expected downstream density by the Weibel instability. The strong magnetic field due to the latter is confined to a layer 10 electron skin depths wide.
  •  
4.
  • Dieckmann, Mark Eric, et al. (författare)
  • The interplay of the collisionless non-linear thin-shell instability with the ion acoustic instability
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - Oxford : Oxford University Press. - 0035-8711 .- 1365-2966. ; 465:4, s. 4240-4248
  • Tidskriftsartikel (refereegranskat)abstract
    • The non-linear thin-shell instability (NTSI) may explain some of the turbulent hydrodynamic structures that are observed close to the collision boundary of energetic astrophysical outflows. It develops in non-planar shells that are bounded on either side by a hydrodynamic shock, provided that the amplitude of the seed oscillations is sufficiently large. The hydrodynamic NTSI has a microscopic counterpart in collisionless plasma. A sinusoidal displacement of a thin shell, which is formed by the collision of two clouds of unmagnetized electrons and protons, grows and saturates on time-scales of the order of the inverse proton plasma frequency. Here we increase the wavelength of the seed perturbation by a factor of 4 compared to that in a previous study. Like in the case of the hydrodynamic NTSI, the increase in the wavelength reduces the growth rate of the microscopic NTSI. The prolonged growth time of the microscopic NTSI allows the waves, which are driven by the competing ion acoustic instability, to grow to a large amplitude before the NTSI saturates and they disrupt the latter. The ion acoustic instability thus imposes a limit on the largest wavelength that can be destabilized by the NTSI in collisionless plasma. The limit can be overcome by binary collisions. We bring forward evidence for an overstability of the collisionless NTSI.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4
Typ av publikation
tidskriftsartikel (4)
Typ av innehåll
refereegranskat (4)
Författare/redaktör
Dieckmann, Mark E., ... (3)
Shukla, Padma K (2)
Dieckmann, Mark Eric (1)
Bret, Antoine (1)
Ynnerman, Anders (1)
Eliasson, Bengt (1)
visa fler...
Walder, Rolf (1)
Folini, Doris (1)
Parviainen, Madelene (1)
OC Drury, Luke (1)
visa färre...
Lärosäte
Språk
Engelska (4)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy