SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0041 1132 ;pers:(Hellberg Åsa)"

Sökning: L773:0041 1132 > Hellberg Åsa

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hellberg, Åsa, et al. (författare)
  • A novel RHCE*02 allele, containing the single-nucleotide change c.460A>G, encodes weakened expression of C and e antigens
  • 2016
  • Ingår i: Transfusion. - : Wiley. - 0041-1132 .- 1537-2995. ; 56:9, s. 2391-2392
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a novel RHCE*02 allele in a Swedish blood donor that is characterized by the change c.460A>G (Arg154Gly). The blood donor's red blood cells showed variable reactivity with different monoclonal anti-C and anti-e and antigen strength was markedly weakened. We believe that these changes represent both a quantitative and qualitative alteration of the antigens encoded by this allele.
  •  
2.
  •  
3.
  •  
4.
  • Hellberg, Åsa, et al. (författare)
  • Expression of a novel missense mutation found in the A4GALT gene of Amish individuals with the p phenotype.
  • 2008
  • Ingår i: Transfusion. - : Wiley. - 1537-2995 .- 0041-1132. ; 48:3, s. 479-487
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The rare p phenotype is found at a higher frequency in Amish people than in other populations. Different mutations in the 4-alpha-galactosyltransferase gene (A4GALT), responsible for synthesis of P(k) (Gb(3)) antigen, have been found to cause the P(k)-deficient p phenotype. The aim of this study was to explore the molecular background of the p phenotype in people of Amish origin. STUDY DESIGN AND METHODS: Twenty blood samples with the p phenotype, 19 of them from Amish individuals and 1 Pakistani, were investigated. Amplification of genomic DNA by polymerase chain reaction (PCR) and sequencing by capillary electrophoresis were performed. Blood donors of different geographic origin were screened with PCR-allele-specific primer to investigate whether the novel mutation occurs among individuals with common phenotypes. The mutation was also cloned into an expression vector and transfected to Namalwa cells, which do not normally express P(k). P(k) expression on the transfected cells and P/P(k) on red blood cells (RBCs), both with p and with common phenotypes, were analyzed by flow cytometry. RESULTS: All 20 samples were homozygous for 299C>T changing serine to leucine in a region that is highly conserved in homologous genes across species borders. The mutation was not found in any of the 500 alleles of blood donors investigated. P(k) expression was neither observed by serology and flow cytometry on p RBCs from Amish individuals nor following transfection of cells with constructs containing the novel missense mutation. CONCLUSION: A novel A4GALT missense mutation causes the p phenotype in Amish individuals.
  •  
5.
  • Hosseini Maaf, Bahram, et al. (författare)
  • An extensive polymerase chain reaction-allele-specific polymorphism strategy for clinical ABO blood group genotyping that avoids potential errors caused by null, subgroup, and hybrid alleles
  • 2007
  • Ingår i: Transfusion. - : Wiley. - 1537-2995 .- 0041-1132. ; 47:11, s. 2110-2125
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: ABO genotyping is complicated by the remarkable diversity at the ABO locus. Recombination or gene conversion between common alleles may lead to hybrids resulting in unexpected ABO phenotypes. Furthermore, numerous mutations associated with weak subgroups and nondeletional null alleles should be considered. All known ABO genotyping methods, however, risk incorrect phenotype predictions if any such alleles are present. Study Design and Methods: An extensive set of allele-specific primers was designed to accomplish hybrid-proof multiplex polymerase chain reaction (PCR) amplification of DNA fragments for detection of ABO alleles. Results were compared with serologic findings and ABO genotypes defined by previously published PCR-restriction fragment length polymorphism/PCR-allele-specific polymorphism (ASP) methods or DNA sequencing. Results: Phenotypically well-characterized samples from blood donors with common blood groups and rare-subgroup families were analyzed. In addition to the commonly encountered alleles (A(1), A(1(467C > T)), A(2), B, O-1, O-1v, and O-2), the new method can detect hybrid alleles thanks to long-range amplification across intron 6. Four of 12 PCR-ASP procedures are used to screen for multiple infrequent subgroup and null alleles. This concept allows for a low-resolution typing format in which the presence of, for example, a weak subgroup or cis-AB/B(A) is indicated but not further defined. In an optional high-resolution step, more detailed genotype information is obtained. Conclusion: A new genotyping approach has been developed and evaluated that can correctly identify ABO alleles including nondeletional null alleles, subgroups, and hybrids resulting from recombinational crossing-over events between exons 6 and 7. This approach is clinically applicable and decreases the risk for erroneous ABO phenotype prediction compared to previously published methods.
  •  
6.
  •  
7.
  • Hult, Annika K, et al. (författare)
  • A new missense variant in exon 7 of the ABO gene, c.662G>A, in a family with B w phenotype.
  • 2022
  • Ingår i: Transfusion. - : Wiley. - 1537-2995 .- 0041-1132. ; 62:10, s. 55-58
  • Tidskriftsartikel (refereegranskat)abstract
    • 1 BACKGROUNDWeak expression of ABO antigens is encountered in the clinical laboratory occasionally, and subgroups of A are more commonly observed in Europeans than subgroups of B. To date, weakly expressing B variant phenotypes have been associated with 38 different alleles according to ISBT (https://www.isbtweb.org/resource/001aboalleles.html). This number is an underrepresentation since there have been several reports of aberrant B expression due to variant alleles since the last update of the ISBT allele table. The current study was initiated by an unusual blood group typing result in a 55-year-old male patient of Czech origin and previously reported as an abstract.12 BRIEF METHODSBlood grouping was performed according to standard blood banking practice, initially using an automatic analyzer (Galileo, Immucor) followed by confirmation with manual gel (BioRad; DG-Gel) and tube agglutination techniques. Initial genotyping analysis was done using a PCR-SSP kit (Innotrain), microarray (BloodChip Reference, Progenika) and subsequently verified by expanded PCR-ASP and PCR-RFLP as described previously.2, 3 ABO exons 1–7 and splice sites were amplified and analyzed, together with the product(s) of PCR-ASP for exons 6–7, by Sanger sequencing.4 A single nucleotide variation (SNV) was detected, and the localization of the affected amino acid is visualized in a 3D-model of ABO glycosyltransferase by Cn3D (v.4.3.1, www.ncbi.nih.gov) and a detailed view obtained by AlphaFold.5, 6 Flow cytometry testing with monoclonal ABO reagents was performed as described previously.73 RESULTSThe proband's red blood cells (RBCs) initially typed as group O but the plasma typing gave negative or weak reactions with test RBCs of group B, depending on the method used, Table 1. An ABO*B.01/O.01.01 genotype was revealed, normally consistent with group B. Screening for selected A and B subgroup allele markers was negative.2 After informed consent, samples from family members were drawn and further investigation was performed.In samples from the proband, his sister and niece, sequence analysis revealed heterozygosity for a SNV in ABO exon 7, c.662G>A (no rs number available) in an otherwise normal ABO*B.01 allele. Significantly weakened B antigen expression was observed in all three individuals. An overview of serological testing and genetic results is shown in Table 1.SNV c.662G>A encodes an amino acid change, p.Gly221Asp. The glycine residue is completely evolutionarily conserved among the members of the GT6 family of glycosyltransferases8 and centrally located in the enzyme, seven amino acids away from the DVD motif (pp. 211–213) that coordinates the Mn2+ ion and the UDP part of the UDP-galactose donor substrate (Figure 1A). However, it is not directly interfering with the catalytic site. Instead, the change of the small neutral glycine to the bulkier and charged aspartic acid is predicted to abolish selected hydrogen bonds and is therefore hypothesized to destabilize the protein conformation (Figure 1B).5, 6
  •  
8.
  • Hult, Annika, et al. (författare)
  • Weak A phenotypes associated with novel ABO alleles carrying the A(2)-related 1061C deletion and various missense substitutions.
  • 2010
  • Ingår i: Transfusion. - : Wiley. - 1537-2995 .- 0041-1132. ; 50, s. 1471-1486
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The 1061delC single-nucleotide polymorphism (SNP) has been reported mostly in the context of the common A(2)[A201] allele and typically produces an A(2) phenotype. This study evaluated new A(weak) alleles, each containing 1061delC. STUDY DESIGN AND METHODS: Twenty samples were referred to our laboratory for analysis due to suspected A(weak) phenotypes originally detected at the referring centers. ABO Exons 1 through 7 and flanking intronic regions were sequenced. A antigen expression on red blood cells was analyzed by flow cytometry. Plasma enzyme activity was studied in one case. Molecular three-dimensional modeling techniques studied the potential effects of amino acid changes on the resulting glycosyltransferases (GTs). RESULTS: Thirteen alleles were discovered, each featuring 1061delC with at least 1 of 12 additional SNPs in the coding region. One of these SNPs disrupts the translation initiation codon. Another constitutes the first reported change in the DVD motif. One SNP found in three alleles causes a substitution of one of the four amino acids that differentiates the wild-type A and B enzymes but plasma enzyme analysis by two methods showed only slightly decreased or normal A(2) activity. Flow cytometric analysis semiquantified the A antigen levels in 16 cases featuring 10 of the alleles and ranged from very weak to nearly A(2) levels. However, the majority of the samples displayed A(x)-like patterns. Molecular modeling of some of the GT variants indicated conformational changes that may explain the diminished A expression observed. CONCLUSION: Missense SNPs were identified in 13 novel A(2)-like alleles, which produced a variety of A subgroup phenotypes.
  •  
9.
  •  
10.
  • Stenfelt, Linn, et al. (författare)
  • The P1 histo-blood group antigen is present on human red blood cell glycoproteins
  • 2019
  • Ingår i: Transfusion. - : Wiley. - 0041-1132. ; 59:3, s. 1108-1117
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The P1 antigen was first described in 1927 and belongs to the P1PK histo-blood group system, together with Pk and NOR. The A4GALT-encoded 4-α-galactosyltransferase synthesizes these antigens and has been considered to extend glycolipids exclusively. However, contradicting studies have been published regarding the presence of P1 on human glycoproteins. In other species, P1 occurs on glycoproteins. Furthermore, human ABH antigens occur on both glycolipids and glycoproteins and are biochemically related to P1. Thus, we hypothesized that P1 is present on RBC glycoproteins in humans. STUDY DESIGN AND METHODS: RBCs of known P1/P2 status (phenotype and rs8138197 genotype) were used. The RBC surface glycans were modified with α-galactosidases, papain, and/or peptide-N-glycosidase F. RBC membrane proteins were analyzed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis/immunoblot. A new P1/P2-allelic discrimination assay based on rs5751348 was validated. RESULTS: P1 occurs on various glycoproteins, seen as smearlike patterns in anti-P1-stained immunoblots with RBC membranes of P1 but not P2 or p phenotype. There was a significant difference between the staining of P1-homozygous and P1-heterozygous RBCs (P1P1 > P1P2), as well as intragenotypic variation. Immunoblotting banding patterns show major carriers at approximately 50 and 100 kDa. P1 staining was lost after treatment of RBCs with α-galactosidase of broad Galα-1,3/4/6-specificity. Peptide-N-glycosidase F treatment reduced the P1 signal, while papain or α-1,3-specific galactosidase did not. P1/P2 status was confirmed by a new rs5751348 assay. CONCLUSION: Our data indicate that the P1 antigen can reside on human RBC glycoproteins. Glycosidase studies suggest that at least part of the epitopes occur on N-glycans.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy