SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0048 9697 OR L773:1879 1026 ;pers:(Augustsson Anna)"

Sökning: L773:0048 9697 OR L773:1879 1026 > Augustsson Anna

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alriksson, Stina, 1971-, et al. (författare)
  • Temporal risk assessment – 20th century Pb emissions to air and exposure via inhalation in the Swedish glass district
  • 2023
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 858:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of the present study was to assess historical emissions of Pb to air around a number of glassworks sites in southeastern Sweden, and the possible implications for human exposure. To do so, a four-step method was applied. First, emissions of Pb to air around 10 glassworks were modelled for the 20th century. Second, an assessment of the resulting exposure was made for a number of scenarios. Third, the number of people potentially exposed at different times was estimated, and fourth, measurements of “current” Pb concentrations in PM10 material from four sites were conducted in 2019. The results show that the highest emissions, and exposures, occurred from 1970 to1980. It coincides with the time period when the highest number of people resided in the villages. At this time, the average Pb concentration in air around the six largest factories was about 2.4 μg Pb/m3, i.e. 16 times the present US national ambient air quality standard (NAAQS) of 0.15 μg Pb/m3. By year 2000 the modelled average concentration had dropped to 0.05 μg Pb/m3, a level that is normal for urban regions today. The PM10 measurements from 2019 indicate a further decline, now with a mean value of about 0.02 μg Pb/m3. Over the entire study period, inhalation hazard quotients (HQs) exceeded the dietary HQ by many orders of magnitude, indicating that inhalation has been the most prevalent exposure pathway in the past. At present, both pathways are judged to be associated with low exposures. Even if only roughly approximated, a picture of the historical exposure can increase our understanding of the connection between exposure and disease, and can be valuable when risks are to be communicated to residents near contaminated areas.
  •  
2.
  • Augustsson, Anna, et al. (författare)
  • Climate change - an uncertainty factor in risk analysis of contaminated land
  • 2011
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 409:22, s. 4693-4700
  • Tidskriftsartikel (refereegranskat)abstract
    • Metals frequently occur at contaminated sites, where their potential toxicity and persistence require risk assessments that consider possible long-term changes. Changes in climate are likely to affect the speciation, mobility, and risks associated with metals. This paper provides an example of how the climate effect can be inserted in a commonly used exposure model, and how the exposure then changes compared to present conditions. The comparison was made for cadmium (Cd) exposure to 4-year-old children at a highly contaminated iron and steel works site in southeastern Sweden. Both deterministic and probabilistic approaches (through probability bounds analysis, PBA) were used in the exposure assessment. Potential climate-sensitive variables were determined by a literature review. Although only six of the total 39 model variables were assumed to be sensitive to a change in climate (groundwater infiltration, hydraulic conductivity, soil moisture, soil:water distribution, and two bioconcentration factors), the total exposure was clearly affected. For example, by altering the climate-sensitive variables in the order of 15% to 20%, the deterministic estimate of exposure increased by 27%. Similarly, the PBA estimate of the reasonable maximum exposure (RME, defined as the upper bound of the 95th percentile) increased by almost 20%. This means that sites where the exposure in present conditions is determined to be slightly below guideline values may in the future exceed these guidelines, and risk management decisions could thus be affected. The PBA, however, showed that there is also a possibility of lower exposure levels, which means that the changes assumed for the climate-sensitive variables increase the total uncertainty in the probabilistic calculations. This highlights the importance of considering climate as a factor in the characterization of input data to exposure assessments at contaminated sites. The variable with the strongest influence on the result was the soil:water distribution coefficient (Kd).
  •  
3.
  • Augustsson, Anna, et al. (författare)
  • Managing health risks in urban agriculture: The effect of vegetable washing for reducing exposure to metal contaminants
  • 2023
  • Ingår i: Science of the Total Environment. - : Elsevier B.V.. - 0048-9697 .- 1879-1026. ; 863
  • Tidskriftsartikel (refereegranskat)abstract
    • A common, yet poorly evaluated, advice to remove contaminants from urban vegetables is to wash the produce before consumption. This study is based on 63 samples of chard, kale, lettuce and parsley that have grown near a heavily trafficked road in the third largest city in Sweden, with one portion of each sample being analysed without first being washed, and the other portion being subjected to common household washing. Concentrations of 71 elements were analysed by ICP-SFMS after a sample digestion that dissolves both the plant tissues and all potentially adhering particles. The results show that the washing effect, or the fraction removed upon washing, varies significantly between elements: from approximately 0 % for K to 68 % for the ∑REEs. Considering traditional metal contaminants, the efficiency decreased from Pb (on average 56 % lost) to Co (56 %) > Cr (55 %) > As (45 %) > Sb (35 %) > Ni (33 %) > Cu (13 %) > Zn (7 %) > Cd (7 %), and Ba (5 %). A clear negative correlation between the washing effect and the different elements' bioconcentration factors shows that the elements' accessibility for plant uptake is a key controlling factor for the degree to which they are removed upon washing. Based on the average washing efficiencies seen in this study, the average daily intake of Pb would increase by 130 % if vegetables are not washed prior to consumption. For the other contaminant metals this increase corresponds to 126 % (Co), 121 % (Cr), 82 % (As), 55 % (Sb), 50 % (Ni), 16 % (Cu), 8 % (Zn), 7 % (Cd) and 5 % (Ba). The advice to wash vegetables is therefore, for many elements, highly motivated for reducing exposure and health risks. For elements which are only slightly reduced when the vegetables are washed, however, advising should rather focus on reducing levels of contamination in the soil itself.
  •  
4.
  • Augustsson, Anna, et al. (författare)
  • The risk of overestimating the risk-metal leaching to groundwater near contaminated glass waste deposits and exposure via drinking water
  • 2016
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 566, s. 1420-1431
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigates metal contamination patterns and exposure to Sb, As, Ba, Cd and Pb via intake of drinking water in a region in southeastern Sweden where the production of artistic glass has resulted in a large number of contaminated sites. Despite high total concentrations of metals in soil and groundwater at the glassworks sites properties, all drinking water samples from households with private wells, located at a 30-640 m distance from a glassworks site, were below drinking water criteria from the WHO for Sb, As, Ba and Cd. A few drinking water samples showed concentrations of Pb above the WHO guideline, but As was the only element found in concentrations that could result in human exposure near toxicological reference values. An efficient retention of metals in the natural soil close to the source areas, which results in a moderate impact on local drinking water, is implied. Firstly, by the lack of significant difference in metal concentrations when comparing households located upstream and downstream of the main waste deposits, and secondly, by the lack of correlation between the metal concentration in drinking water and distance to the nearest glassworks site. However, elevated Pb and Cd concentrations in drinking water around glassworks sites when compared to regional groundwater indicate that diffuse contamination of the soils found outside the glassworks properties, and not only the glass waste landfills, may have a significant impact on groundwater quality. We further demonstrate that different mobilization patterns apply to different metals. Regarding the need to use reliable data to assess drinking water contamination and human exposure, we finally show that the conservative modelling approaches that are frequently used in routine risk assessments may result in exposure estimates many times higher than those based on measured concentrations in the drinking water that is actually being used for consumption. (C) 2016 Elsevier B.V. All rights reserved.
  •  
5.
  • Augustsson, Anna, et al. (författare)
  • Urban vegetable contamination - The role of adhering particles and their significance for human exposure
  • 2023
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 900
  • Tidskriftsartikel (refereegranskat)abstract
    • While urban-grown vegetables could help combat future food insecurity, the elevated levels of toxic metals in urban soils need to be met with measures that minimise transfer to crops. The study firstly examines soil/dust particle inclusion in leafy vegetables and its contribution to vegetable metals (As, Ba, Cd, Co, Cr, Cu, Ni, Pb, Sb, and Zn), using vegetable, soil and dust data from an open-field urban farm in southeastern Sweden. Titanium concentrations were used to assess soil/dust adherence. Results showed that vegetables contained 0.05–1.3 wt% of adhering particles (AP) even after washing. With 0.5 % AP, an adult with an average intake of vegetables could ingest approximately 100mg of particles per day, highlighting leafy vegetables as a major route for soil/dust ingestion. The presence of adhering particles also significantly contributed to the vegetable concentrations of As (9-20%), Co (17-20%), Pb (25-29%), and Cr (33-34%). Secondly, data from an indoor experiment was used to characterise root metal uptake from 20 urban soils from Sweden, Denmark, Spain, the UK, and the Czech Republic. Combining particle adherence and root uptake data, vegetable metal concentrations were calculated for the 20 urban soils to represent hypothetical field scenarios for these. Subsequently, average daily doses were assessed for vegetable consumers (adults and 3-6 year old children), distinguishing between doses from adhering particles and root uptake. Risks were evaluated from hazard quotients (HQs; average daily doses/tolerable intakes). Lead was found to pose the greatest risk, where particle ingestion often resulted in HQs>1 across all assessed scenarios. In summary, since washing was shown to remove only a portion of adhering metal-laden soil/dust particles from leafy vegetation, farmers and urban planners need to consider that measures to limit particle deposition are equally important as cultivating in uncontaminated soil.
  •  
6.
  • Hagner, Marleena, et al. (författare)
  • Assessing toxicity of metal contaminated soil from glassworks sites with a battery of biotests
  • 2018
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 613, s. 30-38
  • Tidskriftsartikel (refereegranskat)abstract
    • The present study addresses toxicological properties of metal contaminated soils, using glassworks sites in south-easternl Sweden as study objects. Soil from five selected glassworks sites as well as from nearby reference areas were analysed for total and water-soluble metal concentrations and general geochemical parameters. A battery of biotests was then applied to assess the toxicity of the glassworks soil environments: a test of phytotoxicity with garden cress (Lepidium sativum); the BioTox(TM) test for toxicity to bacteria using Vibrio fischeri; and analyses of abundancies and biomass of nematodes and enchytraeids. The glassworks-and reference areas were comparable with respect to pH and the content of organic matter and nutrients (C, N, P), but total metal concentrations (Pb, As, Ba, Cd and Zn) were significantly higher at the former sites. Higher metal concentrations in the water-soluble fraction were also observed, even though these concentrations were low compared to the total ones. Nevertheless, toxicity of the glassworks soils was not detected by the two ex situ tests; inhibition of light emission by V. fischeri could not be seen, nor was an effect seen on the growth of L. sativum. A decrease in enchytraeid and nematode abundance and biomass was, however, observed for the landfill soils as compared to reference soils, implying in situ toxicity to soil-inhabiting organisms. The confirmation of in situ bioavailability and negative effects motivates additional studies of the risk posed to humans of the glassworks villages. (C) 2017 Published by Elsevier B.V.
  •  
7.
  • Rocha, Eva, et al. (författare)
  • Testing the applicability of dendrochemistry using X-ray fluorescence to trace environmental contamination at a glassworks site
  • 2020
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 720, s. 1-12
  • Tidskriftsartikel (refereegranskat)abstract
    • The potential of dendrochemistry as a tool for tracing anthropogenic contamination at a glassworks site in southeastern Sweden was investigated through a multidisciplinary approach combining continuous high-resolution time series of tree rings and sediment profiles. Tree cores from Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and European aspen (Populus tremula) were analysed for their elemental composition using an energy dispersive X-ray fluorescence (ED-XRF) technique. Sediment cores were sampled along a transect extending from the pollution point source to unpolluted areas and analysed using core-scanning-XRF (CS-XRF). High contaminant concentrations in the soil were found for As (approximate to 2000 ppm), Pb (>5000 ppm), Ba (approximate to 1000 ppm) and Cd (approximate to 150 ppm). The concentrations decreased with depth and distance from the pollution source. The dendrochemical analyses revealed alterations in the Barium, Chlorine and Manganese profiles, allowing the identification of seven potential asynchronous releases from the glassworks. Our results suggest that differences in the response of tree species to elemental uptake together with soil chemical properties dictate the success of dendrochemistry as an environmental monitoring tool. (C) 2020 Elsevier B.V. All rights reserved.
  •  
8.
  • Uddh Söderberg, Terese, et al. (författare)
  • An assessment of health risks associated with arsenic exposure via consumption of homegrown vegetables near contaminated glassworks sites
  • 2015
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 536, s. 189-197
  • Tidskriftsartikel (refereegranskat)abstract
    • The health risk posed by arsenic in vegetables grown in private gardens near 22 contaminated glassworks sites was investigated in this study. Firstly, vegetable (lettuce and potato) and soil samples were collected and arsenic concentrations measured to characterize the arsenic uptake in the selected crops. Secondly, a probabilistic exposure assessment was conducted to estimate the average daily intake (ADI(veg)), which was then evaluated against toxicological reference values by the calculation of hazard quotients (HQs) and cancer risks (CRs). The results show that elevated arsenic concentrations in residential garden soils are mirrored by elevated concentrations in vegetables, and that consumption of these vegetables alone may result in an unacceptable cancer risk; the calculated reasonable maximum exposure, for example, corresponded to a cancer incidence 20 times higher than the stated tolerance limit. However, the characterization of risk depends to a great extent on which toxicological reference value is used for comparison, as well as how the exposure is determined. Based on the assumptions made in the present study, the threshold levels for chronic non-carcinogenic or acute effects were not exceeded, but the cancer risks indicated highlight the need for further exposure studies, as dietary intake involves more than just homegrown vegetables and total exposure is a function of more than just one exposure pathway. In addition, glassworks sites - and contaminated sites in general - contain multiple contaminants, affecting the final and total risk.
  •  
9.
  • Uddh Söderberg, Terese, 1976-, et al. (författare)
  • Metal solubility and transport at a contaminated landfill site – From the source zone into the groundwater
  • 2019
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 668, s. 1064-1076
  • Tidskriftsartikel (refereegranskat)abstract
    • Risks associated with metal contaminated sites are tightly linked to material leachability and contaminant mobility. In this study, metal solubility and transport were characterized within a glass waste landfill through i) lysimeter-collection of pore water and standardized batch leaching tests, ii) soil profiles extending from the landfill surface, through unsaturated soil underneath, and into the groundwater zone, and iii) groundwater samples upstream, at, and downstream of the landfill. The soil analyzes targeted both pseudo-total and geochemically active concentrations of contaminant metals (As, Cd, Pb, Sb) and basic soil geochemistry (pH, org. C, Fe,Mn). Water samples were analyzed for dissolved, colloid-bound and particulate metals, and speciation modelling of the aqueous phase was conducted. The results revealed a highly contaminated system, with mean metal concentrationsin the waste zone between 90 and 250 times the regional background levels. Despite severe contamination of the waste zone and high geochemically active fractions (80–100%) of all contaminant metals as well as elevated concentrations in landfill pore water, the concentrations of Cd and Pb decrease abruptly at the transition between landfill and underlying natural soil and no indication of groundwater contamination was found. The efficient cation retention is likely due to the high pH. However, the sorption of As and Sb is weaker at such high pH,which explains their higher mobility from the pore water zone into groundwater. The field soil:solution for Pb, ranging from 140 to 2,900,000 l kg−1), despite little variability in basic geochemical variables, which we suggest is due to waste material heterogeneity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy