SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0048 9697 OR L773:1879 1026 ;pers:(Hvitt Strömvall Ann Margret 1963)"

Sökning: L773:0048 9697 OR L773:1879 1026 > Hvitt Strömvall Ann Margret 1963

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Björklund, Karin, 1979, et al. (författare)
  • Phthalates and nonylphenols in urban runoff: Occurrence, distribution and area emission factors
  • 2009
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 407:16, s. 4665-4672
  • Tidskriftsartikel (refereegranskat)abstract
    • The urban water system is believed to be an important sink for the nonpoint-source pollutants nonylphenols and phthalates. The presence of nonylphenols (NPs), nonylphenol ethoxylates (NPEOs), and eight phthalates was analyzed in urban stormwater and sediment from three catchment areas in Sweden. Emission loads for these substances were then calculated for a specific urban catchment area. In addition, substance distribution in road runoff passing through a sedimentation facility was modeled using a modified QWASI-model for chemical fate. High concentrations of DEHP, DIDP and DINP (≤ 48, 66 and 200 µg/g dw, respectively) as well as nonylphenol mono- and di-ethoxylate (6.6 and 20 µg/g dw, respectively) were found in the sediment. Aqueous concentrations of the pollutants varied considerably; branched NP was detected in concentrations up to 1.2 µg/L, whereas di(2-ethylhexyl) phthalate (DEHP), diisodecyl phthalate (DIDP), and diisononyl phthalate (DINP) were the most frequently detected phthalates in concentrations up to 5.0, 17 and 85 µg/L, respectively. The fate modeling demonstrated that predicted substance levels in water agreed well with measured levels, whereas the modeled sediment levels were underestimated. Calculation of catchment area emission factors from an urban highway environment revealed that as much as 2.1 kg of total phthalates and 200 g of NP and NPEOs may be emitted per hectare and year. The results indicate that all monitored phthalates, branched NPs and lower NPEOs are present in Swedish urban water systems. The long-chain phthalates DIDP and DINP are believed to occur at higher concentrations than other phthalates because of their higher environmental persistence and their increasing use in Sweden.
  •  
2.
  • Järlskog, Ida, 1991, et al. (författare)
  • Occurrence of tire and bitumen wear microplastics on urban streets and in sweepsand and washwater
  • 2020
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 729
  • Tidskriftsartikel (refereegranskat)abstract
    • Tire and road wear particles have been identified as a potential major source of microplastics in the environment. However, more knowledge of the emissions and their further fate in the environment is needed, and the effectiveness and benefits of potential measures must be investigated to support future risk management efforts. Here the concentrations of tire and bitumen microplastic particles (TBMP) on roads and in nearby in stormwater, sweepsand and washwater were measured for the first time within the same area and time period. The analysis also included plastic, paint and fiber particles. Road dust was sampled on the road surface using a wet dust sampler, before and after street sweeping on two occasions. On each of these occasions, and several occasions during a four-month period with frequent street sweeping, sweepsand and washwater, as well as flow-weighted sampling of stormwater, were collected. TBMP concentrations were operationally defined, using density separation for some samples, followed by analysis by stereo microscopy. Sodium iodide (NaI) was found to be effective for density separation of TBMP. The largest proportion of anthropogenic microplastics detected consisted of tire tread wear and bitumen. The number of TBMP ≥100 μm in the WDS samples was up to 2561 particles/L. Sweepsand and washwater contained high amounts of TBMP ≥100 μm, up to 2170 particles/kg dw and 4500 particles/L, respectively. The results show that the sweeper collects considerable amounts of TBMP, and thus weekly sweeping might prevent further transport of TBMP to the receiving stormwater. In stormwater the number of particles ≥100 μm was up to 3 particles/L and ≥ 20 μm was up to 5900 particles/L showing the importance of analysing smaller microparticle sizes than 100 μm in all samples in future studies. This study also confirms that there is a substantial volume of TBMP generated from traffic that enters the environment.
  •  
3.
  • Järlskog, Ida, 1991, et al. (författare)
  • Traffic-related microplastic particles, metals, and organic pollutants in an urban area under reconstruction
  • 2021
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 774
  • Tidskriftsartikel (refereegranskat)abstract
    • In urban environments, particularly areas under reconstruction, metals, organic pollutants (OP), and microplastics (MP), are released in large amounts due to heavy traffic. Road runoff, a major transport route for urban pollutants, contributes significantly to a deteriorated water quality in receiving waters. This study was conducted in Gothenburg, Sweden, and is unique because it simultaneously investigates the occurrence of OP, metals, and MP on roads and in stormwater from an urban area under reconstruction. Correlations between the various pollutants were also explored. The study was carried out by collecting washwater and sweepsand generated from street sweeping, road surface sampling, and flow-proportional stormwater sampling on several occasions. The liquid and solid samples were analyzed for metals, polycyclic aromatic hydrocarbons (PAH), oxy-PAH, aliphatics, aromatics, phthalates, and MP. The occurrence of OP was also analyzed with a non-target screening method of selected samples. Microplastics, i.e. plastic fragments/fibers, paint fragments, tire wear particles (TWP) and bitumen, were analyzed with a method based on density separation with sodium iodide and identification with a stereo microscope, melt-tests, and tactile identification. MP concentrations amounted to 1500 particles/L in stormwater, 51,000 particles/L in washwater, and 2.6 × 106 particles/kg dw in sweepsand. In stormwater, washwater and sweepsand, MP ≥20 μm were found to be dominated by TWP (38%, 83% and 78%, respectively). The results confirm traffic as an important source to MP, OP, and metal emissions. Concentrations exceeding water and sediment quality guidelines for metals (e.g. Cu and Zn), PAH, phthalates, and aliphatic hydrocarbons in the C16–C35 fraction were found in most samples. The results show that the street sweeper collects large amounts of polluted materials and thereby prevents further spread of the pollutants to the receiving stormwater.
  •  
4.
  • Karlfeldt Fedje, Karin, 1977, et al. (författare)
  • Evaluation of solid residues quality after enhanced Cu leaching of polluted soils
  • 2016
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 563-564:1 September 2016, s. 676-682
  • Tidskriftsartikel (refereegranskat)abstract
    • Excavation followed by landfilling is one of the most common methods for treating soils contaminated with metals. Removing the metals through soil washing not only allows valuable substances to be recovered, but also results in cleaner soil residues. In this project a method for leaching and recovering Cu from polluted soils using acidic wastewater is further developed and evaluated, with special attention to the leaching process. In addition, the qualities of the soil residues are assessed in order to investigate how the proposed remediation method affects the soil properties. Soil samples highly polluted with copper (Cu) were collected from two sites in Sweden. After acidic leaching and water washing, the Cu content of the soil samples was reduced five times or more. The original soils could not even be deposited in landfills for hazardous waste; however after treatment of the soils according to the proposed method, the Cu leaching decreased six-fold and the solid residue was safe enough to be deposited in landfills for non-hazardous waste. The soil function “soil as filter and buffer for heavy metals” was evaluated using the TUSEC (technique for soil evaluation and categorization for natural and anthropogenic soils) manual. Originally the soils were of “low” i.e. class 4 or “very low capacity of binding and buffering heavy metals” i.e. class 5, while after the remediation process, both soils were categorized as Class 5. To summarize, the proposed method clearly shows potential not only for remediation of Cu polluted soils but also indicate a potential for recovery and reuse of Cu from the leachates generated. Even though the previously highly polluted soils could not be directly put back at the original sites, the solid residues could be deposited in landfills for non-hazardous waste, which is an improvement, considering the original soils could not even be deposited in a landfill for hazardous waste.
  •  
5.
  • Markiewicz, Anna, 1984, et al. (författare)
  • Alternative sorption filter materials effectively remove non-particulate organic pollutants from stormwater
  • 2020
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 730
  • Tidskriftsartikel (refereegranskat)abstract
    • Urban runoff contains a mixture of both particulate and non-particulate organic pollutants (OPs). Hydrophobic OPs such as higher petroleum hydrocarbons, phthalates, and polycyclic organic hydrocarbons (PAHs) are not exclusively bound to particles, but also present in runoff in colloidal and truly dissolved forms. These hydrophobic compounds can also form nano- and microsized emulsions that may carry pollutants in stormwater. Hence, it is of great importance to develop treatment technologies such as sorption filters that can remove non-particulate OPs from contaminated stormwater. A pilot plant using column bed-filters of sand as a pre-filter, in combination with granulated activated carbon, Sphagnum peat or Pinus sylvestris bark, was used to investigate the removal of non-particulate OPs from urban stormwater. Samples from the filter effluents were collected weekly; during or after rain events; and during stress tests when incoming water was spiked with contaminated sediment and petrol or diesel. All sorption filters showed efficient reduction of aliphatic diesel hydrocarbons C16–C35, benzene, and the PAHs phenanthrene, fluoranthene, and pyrene during most of the operation time, which was 18 months. During the stress test events, all sorption filters showed 100% reduction of PAH-16, petrol and diesel aliphatics C5–C35. All sorption filters released DOC and nanoparticles, which may explain some of the transportation of OPs through the filter beds. The recommendation is to use a combination of sand pre-filtration and all the studied sorption materials in stormwater filters in series, to achieve effective removal of different types of OPs. It is also important to improve the hydraulic conditions to obtain sufficient water flows through the filters.
  •  
6.
  • Markiewicz, Anna, 1984, et al. (författare)
  • Emissions of organic pollutants from traffic and roads : Priority pollutants selection and substance flow analysis
  • 2017
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 580, s. 1162-1174
  • Tidskriftsartikel (refereegranskat)abstract
    • A large number of organic pollutants (OPs) emitted from vehicles and traffic-related activities exhibit environmental persistence and a tendency to bioaccumulate, and may have detrimental long-term effects on aquatic life. The aim of the study was to establish a list of significant sources of OPs occurring in road runoff, identify the OPs emitted from these sources, select a number of priority pollutants (PP), and estimate the quantity of PPs emitted in a road environment case study using substance flow analysis (SFA). The priority pollutants included in the SFA were selected from a list of approximately 1100 compounds found after comprehensive screening, including literature and database searches, expert judgments, the Ranking and Identification of Chemical Hazards method, and chemical analysis of sediments. The results showed the following priority order: polycyclic aromatic hydrocarbons (PAHs) > alkanes C20–C40 > alkylphenols > phthalates > aldehydes > phenolic antioxidants > bisphenol A > oxygenated-PAHs > naphtha C5–C12 > amides > amines. Among these, PAHs were chosen for a SFA, which was performed for a highway case study area in Gothenburg (Sweden). The SFA showed that the main sources of PAHs emitted in the area were vehicle exhaust gases, followed by tyre wear, motor lubricant oils, road surface wear, and brake linings. Only 2–6% of the total 5.8–29 kg annually emitted PAHs/ha ended up in the stormwater sewer system. The measured PAH loads were found in much smaller amounts than the calculated loads and the outflow to stormwater contained much more of the hazardous PAHs than the total loads emitted in the catchment area.
  •  
7.
  • Nielsen, Katrine, et al. (författare)
  • Particle phase distribution of polycyclic aromatic hydrocarbons in stormwater : Using humic acid and iron nano-sized colloids as test particles
  • 2015
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697 .- 1879-1026. ; 532, s. 103-111
  • Tidskriftsartikel (refereegranskat)abstract
    • The distribution of polycyclic aromatic hydrocarbons (PAHs) in different particulate fractions in stormwater: Total, Particulate, Filtrated, Colloidal and Dissolved fractions, were examined and compared to synthetic suspensions of humic acid colloids and iron nano-sized particles. The distribution of low-molecular weight PAHs (LMW PAHs), middle-molecular weight PAHs (MMWPAHs) and high-molecularweight PAHs (HMWPAHs) among the fractions was also evaluated. The results from the synthetic suspensions showed that the highest concentrations of the PAHs were found in the Filtrated fractions and, surprisingly, high loads were found in the Dissolved fractions. The PAHs identified in stormwater in the Particulate fractions and Dissolved fractions follow their hydrophobic properties. In most samples N50% of the HMW PAHs were found in the Particulate fractions, while the LMW and MMW PAHs were found to a higher extent in the Filtrated fractions. The highest concentrations of PAHs were present in the stormwater with the highest total suspended solids (TSS); the relative amount of the HMWPAHs was highest in the Particulate fractions (particles N 0.7 μm). The highest concentration of PAHs in the Colloidal fraction was found in the sample with occurrence of small nano-sized particles (b10 nm). The results show the importance of developing technologies that both can manage particulate matter and effectively remove PAHs present in the Colloidal and Dissolved fractions in stormwater.
  •  
8.
  • Norén, Anna, 1989, et al. (författare)
  • Integrated assessment of management strategies for metal-contaminated dredged sediments : What are the best approaches for ports, marinas and waterways?
  • 2020
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 716
  • Tidskriftsartikel (refereegranskat)abstract
    • Sediments in ports, marinas and waterways around the world are often contaminated with metals arising from anthropogenic activities. Regular dredging is needed to achieve an appropriate water depth and reduce the environmental impact of pollutants. The aim of this study was to develop an integrated assessment method for comparing various management strategies for dredged sediments at six case study sites in Sweden. Short- and long-term environmental impacts were investigated for different management approaches, including landfilling, deep-sea disposal, metal extraction in combination with the two aforementioned, and natural recovery (no dredging). The potential value of metals in the sediments was estimated using sediment metal contents and current metal prices. Additionally, an assessment of how metal extraction could result in lower management costs was carried out. The cost of the different management approaches was calculated and evaluated together with the corresponding environmental impacts. This study shows that there is a monetary value in dredged materials, in terms of metal content, and that the materials can potentially be used for metal extraction. Metal extraction may also help to reduce the management costs, as cleaner materials are cheaper to handle. The choice of metal recovery method is important in both monetary and environmental terms, potentially contributing to a circular economy. In the future, metal recovery may become more profitable, as technologies are improved, and due to probable increases in metal prices and landfill costs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy