SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0094 2405 OR L773:2473 4209 ;lar1:(su)"

Sökning: L773:0094 2405 OR L773:2473 4209 > Stockholms universitet

  • Resultat 1-10 av 34
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Benmakhlouf, Hamza, et al. (författare)
  • Output correction factors for nine small field detectors in 6 MV radiation therapy photon beams : A PENELOPE Monte Carlo study
  • 2014
  • Ingår i: Medical physics (Lancaster). - : Wiley. - 0094-2405 .- 2473-4209. ; 41:4, s. 041711-
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To determine detector-specific output correction factors, k(Qclin,Qmsr)(fclin,fmsr) in 6 MV small photon beams for air and liquid ionization chambers, silicon diodes, and diamond detectors from two manufacturers. Methods: Field output factors, defined according to the international formalism published by Alfonso et al. [Med. Phys. 35, 5179-5186 (2008)], relate the dosimetry of small photon beams to that of the machine-specific reference field; they include a correction to measured ratios of detector readings, conventionally used as output factors in broad beams. Output correction factors were calculated with the PENELOPE Monte Carlo (MC) system with a statistical uncertainty (type-A) of 0.15% or lower. The geometries of the detectors were coded using blueprints provided by the manufacturers, and phase-space files for field sizes between 0.5 x 0.5 cm(2) and 10 x 10 cm(2) from a Varian Clinac iX 6 MV linac used as sources. The output correction factors were determined scoring the absorbed dose within a detector and to a small water volume in the absence of the detector, both at a depth of 10 cm, for each small field and for the reference beam of 10 x 10 cm(2). Results: The Monte Carlo calculated output correction factors for the liquid ionization chamber and the diamond detector were within about +/- 1% of unity even for the smallest field sizes. Corrections were found to be significant for small air ionization chambers due to their cavity dimensions, as expected. The correction factors for silicon diodes varied with the detector type (shielded or un-shielded), confirming the findings by other authors; different corrections for the detectors from the two manufacturers were obtained. The differences in the calculated factors for the various detectors were analyzed thoroughly and whenever possible the results were compared to published data, often calculated for different accelerators and using the EGSnrc MC system. The differences were used to estimate a type-B uncertainty for the correction factors. Together with the type-A uncertainty from the Monte Carlo calculations, an estimation of the combined standard uncertainty was made, assigned to the mean correction factors from various estimates. Conclusions: The present work provides a consistent and specific set of data for the output correction factors of a broad set of detectors in a Varian Clinac iX 6 MV accelerator and contributes to improving the understanding of the physics of small photon beams. The correction factors cannot in general be neglected for any detector and, as expected, their magnitude increases with decreasing field size. Due to the reduced number of clinical accelerator types currently available, it is suggested that detector output correction factors be given specifically for linac models and field sizes, rather than for a beam quality specifier that necessarily varies with the accelerator type and field size due to the different electron spot dimensions and photon collimation systems used by each accelerator model. (C) 2014 American Association of Physicists in Medicine.
  •  
2.
  • Dasu, Alexandru, et al. (författare)
  • Impact of variable RBE on proton fractionation
  • 2013
  • Ingår i: Medical physics (Lancaster). - : Wiley. - 0094-2405 .- 2473-4209. ; 40:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To explore the impact of variable proton RBE on dose fractionation for clinically-relevant situations. A generic RBE=1.1 is generally used for isoeffect calculations, while experimental studies showed that proton RBE varies with tissue type, dose and LET.Material and methods: An analytical expression for the LET and α/β dependence of the LQ model has been used for proton simulations in parallel with the assumption of a generic RBE=1.1. Calculations have been performed for ranges of LET values and fractionation sensitivities to describe clinically-relevant cases, like the treatment of H&N and prostate tumors. Isoeffect calculations were compared with predictions from a generic RBE value and reported clinical results.Results: The generic RBE=1.1 appears to be a reasonable estimate for the proton RBE of rapidly growing tissues irradiated with low LET radiation. However, the use of a variable RBE predicts larger differences for tissues with low α/β (both tumor and normal) and at low doses per fraction. In some situations these differences may appear in contrast to the findings from photon studies highlighting the importance of accurate accounting for the radiobiological effectiveness of protons. Furthermore, the use of variable RBE leads to closer predictions to clinical results. Conclusions: The LET dependence of the RBE has a strong impact on the predicted effectiveness of fractionated proton radiotherapy. The magnitude of the effect is modulated by the fractionation sensitivity and the fractional dose indicating the need for accurate analyses both in the target and around it. Care should therefore be employed for changing clinical fractionation patterns or when analyzing results from clinical studies for this type of radiation.
  •  
3.
  • Giantsoudi, D., et al. (författare)
  • A gEUD-based inverse planning technique for HDR prostate brachytherapy : Feasibility study
  • 2013
  • Ingår i: Medical physics (Lancaster). - : Wiley. - 0094-2405 .- 2473-4209. ; 40:4, s. 041704-
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: The purpose of this work was to study the feasibility of a new inverse planning technique based on the generalized equivalent uniform dose for image-guided high dose rate (HDR) prostate cancer brachytherapy in comparison to conventional dose-volume based optimization. Methods: The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO (Hybrid Inverse Planning Optimization) is compared with alternative plans, which were produced through inverse planning using the generalized equivalent uniform dose (gEUD). All the common dose-volume indices for the prostate and the organs at risk were considered together with radiobiological measures. The clinical effectiveness of the different dose distributions was investigated by comparing dose volume histogram and gEUD evaluators. Results: Our results demonstrate the feasibility of gEUD-based inverse planning in HDR brachytherapy implants for prostate. A statistically significant decrease in D-10 or/and final gEUD values for the organs at risk (urethra, bladder, and rectum) was found while improving dose homogeneity or dose conformity of the target volume. Conclusions: Following the promising results of gEUD-based optimization in intensity modulated radiation therapy treatment optimization, as reported in the literature, the implementation of a similar model in HDR brachytherapy treatment plan optimization is suggested by this study. The potential of improved sparing of organs at risk was shown for various gEUD-based optimization parameter protocols, which indicates the ability of this method to adapt to the user's preferences.
  •  
4.
  • Häger, Wille, et al. (författare)
  • Experimental investigation of TRS-483 reference dosimetry correction factors for Leksell Gamma Knife (R) Icon (TM) beams
  • 2021
  • Ingår i: Medical physics (Lancaster). - : Wiley. - 0094-2405 .- 2473-4209. ; 48:1, s. 434-444
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Radiosurgery using the Leksell Gamma Knife (R) (LGK) Icon (TM) is an established technique used for treating intracranial lesions. The largest beam field size the LGK Icon can produce is a 16 mm diameter sphere. Despite this, reference dosimetry on the LGK Icon is typically performed using ionization chambers calibrated in 10 x 10 cm(2) fields. Furthermore, plastic phantoms are widely used instead of liquid water phantoms. In an effort to resolve these issues, the International Atomic Energy Agency (IAEA) in collaboration with American Association of Physicists in medicine (AAPM) recently published Technical Report Series No. 483 (TRS-483) as a Code of Practice for small-field dosimetry. TRS-483 includes small-field correction factors, k(Qmsr,Q0)(fmsr,fref), intended to account for the differences between setups when using small-field modalities such as the LGK Icon, and conventional setups. Since the publication of TRS-483, at least three new sets of values of k(Qmsr,Q0)(fmsr,fref) for the LGK Icon have been published. The purpose of this study was to experimentally investigate the published values of k(Qmsr,Q0)(fmsr,fref) for commonly used phantom and ionization chamber (IC) models for the LGK Icon.Methods: Dose-rates from two LGK units were determined using acrylonitrile butadiene styrene (ABS) and Certified Medical Grade Solid Water (R) (SW) phantoms, and PTW 31010 and PTW 31016 ICs. Correction factors were applied, and the resulting dose-rates compared. Relative validity of the correction factors was investigated by taking the ratios of dose-rate correction factor products. Additionally, dose-rates from the individual sectors were determined in order to calculate the beam attenuation caused by the ABS phantom adapter.Results and Conclusions: It was seen that the dose-rate is underestimated by at least 1% when using the ABS phantom, which was attributed to fluence perturbation caused by the IC and phantom adapter. Published correction factors k(Qmsr,Q0)(fmsr,fref) account for these effects to varying degree and should be used. The SW phantom is unlikely to underestimate the dose-rate by more than 1%, and applying k(Qmsr,Q0)(fmsr,fref) could not be shown to be necessary. Out of the two phantom models, the ABS phantom is not recommended for use in LGK reference dosimetry. The use of newly published values of k(Qmsr,Q0)(fmsr,fref) should be considered.
  •  
5.
  • Kalholm, Fredrik, et al. (författare)
  • Modeling RBE with other quantities than LET significantly improves prediction of in vitro cell survival for proton therapy
  • 2023
  • Ingår i: Medical physics (Lancaster). - : Wiley. - 0094-2405 .- 2473-4209. ; 50:1, s. 651-659
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: For proton therapy, a relative biological effectiveness (RBE) of 1.1 has broadly been applied clinically. However, as unexpected toxicities have been observed by the end of the proton tracks, variable RBE models have been proposed. Typically, the dose-averaged linear energy transfer (LETd) has been used as an input variable for these models but the way the LETd was defined, calculated, or determined was not always consistent, potentially impacting the corresponding RBE value.Purpose: This study compares consistently calculated LETd with other quantities as input variables for a phenomenological RBE model and attempts to determine which quantity that can best predicts proton RBE. The comparison was performed within the frame of introducing a new model for the proton RBE.Methods: High-throughput experimental setups of in vitro cell survival studies for proton RBE determination are simulated using the SHIELD-HIT12A Monte Carlo particle transport code. Together with LET, z∗2∕?2, here called effective Q (Qeff), and Q are scored. Each quantity is calculated using the dose and track averaging methods, because the scoring includes all hadronic particles, all protons or only primaries. A phenomenological linear-quadratic-based RBE model is subsequently applied to the in vitro data with the various beam quality descriptors used as input variables and the goodness of fit is determined and compared using a bootstrapping approach. Both linear and nonlinear fit functions were tested.Results: Versions of Qeff and Q outperform LET with a statistically significant margin, with the best nonlinear and linear fit having a relative root mean square error (RMSE) for RBE2Gy ± one standard error of 1.55 ± 0.04 (Qeff, t, primary) and 2.84 ± 0.07 (Qeff, d, primary), respectively. For comparison, the corresponding best nonlinear and linear fits for LETd, all protons had a relative RMSE of 2.07 ± 0.06 and 3.39 ± 0.08, respectively. Applying Welch's t-test for comparing the calculated RMSE of RBE2Gy resulted in two-tailed p-values of <0.002 for all Q and Qeff quantities compared to LETd, all protons.Conclusions: The study shows that Q or Qeff could be better RBE descriptors that dose averaged LET.
  •  
6.
  • Kalholm, Fredrik, et al. (författare)
  • Novel radiation quality metrics accounting for proton energy spectra for RBE proton models
  • 2024
  • Ingår i: Medical physics (Lancaster). - 0094-2405. ; 51:8, s. 5773-5782
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: For proton therapy, a relative biological effectiveness (RBE) of 1.1 is widely applied clinically. However, due to abundant evidence of variable RBE in vitro, and as suggested in studies of patient outcomes, RBE might increase by the end of the proton tracks, as described by several proposed variable RBE models. Typically, the dose averaged linear energy transfer (LETd) has been used as a radiation quality metric (RQM) for these models. However, the optimal choice of RQM has not been fully explored.Purpose: This study aims to propose novel RQMs that effectively weight protons of different energies, and assess their predictive power for variable RBE in proton therapy. The overall objective is to identify an RQM that better describes the contribution of individual particles to the RBE of proton beams.Methods: High-throughput experimental set-ups of in vitro cell survival studies for proton RBE determination are simulated utilizing the SHIELD-HIT12A Monte Carlo particle transport code. For every data point, the proton energy spectra are simulated, allowing the calculation of novel RQMs by applying different power levels to the spectra of LET or effective Q (Qeff) values. A phenomenological linear-quadratic-based RBE model is then applied to the in vitro data, using various RQMs as input variables, and the model performance is evaluated by root-mean-square-error (RMSE) for the logarithm of cell surviving fractions of each data point.Results: Increasing the power level, that is, putting an even higher weight on higher LET particles when constructing the RQM is generally associated with an increased model performance, with dose averaged LET3 (i.e., dose averaged cubed LET, cLETd) resulting in a RMSE value 0.31, compared to 0.45 for a model based on (linearly weighted) LETd, with similar trends also observed for track averaged and Qeff-based RQMs.Conclusions: The results indicate that improved proton variable RBE models can be constructed assuming a non-linear RBE(LET) relationship for individual protons. If similar trends hold also for an in vitro-environment, variable RBE effects are likely better described by cLETd or tracked averaged cubed LET (cLETt), or corresponding Qeff-based RQM, rather than linearly weighted LETd or LETt which is conventionally applied today.
  •  
7.
  • Kaushik, Suryakant, 1993-, et al. (författare)
  • Generation and evaluation of anatomy-preserving virtual CT for online adaptive proton therapy
  • 2024
  • Ingår i: Medical physics (Lancaster). - 0094-2405. ; 51:3, s. 1536-1546
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Daily CTs generated by CBCT correction are required for daily replanning in online-adaptive proton therapy (APT) to effectively deal with inter-fractional changes. Out of the currently available methods, the suitability of a daily CT generation method for proton dose calculation also depends on the anatomical site.Purpose: We propose an anatomy-preserving virtual CT (APvCT) method as a hybrid method of CBCT correction, which is especially suitable for large anatomy deformations. The accuracy of the hybrid method was assessed by comparison with the corrected CBCT (cCBCT) and virtual CT (vCT) methods in the context of online APT.Methods: Seventy-one daily CBCTs of four prostate cancer patients treated with intensity modulated proton therapy (IMPT) were converted to daily CTs using cCBCT, vCT, and the newly proposed APvCT method. In APvCT, planning CT (pCT) were mapped to CBCT geometry using deformable image registration with boundary conditions on controlling regions of interest (ROIs) created with deep learning segmentation on cCBCT. The relative frequency distribution (RFD) of HU, mass density and stopping power ratio (SPR) values were assessed and compared with the pCT. The ROIs in the APvCT and vCT were compared with cCBCT in terms of Dice similarity coefficient (DSC) and mean distance-to-agreement (mDTA). For each patient, a robustly optimized IMPT plan was created on the pCT and subsequent daily adaptive plans on daily CTs. For dose distribution comparison on the same anatomy, the daily adaptive plans on cCBCT and vCT were recalculated on the corresponding APvCT. The dose distributions were compared in terms of isodose volumes and 3D global gamma-index passing rate (GPR) at γ(2%, 2 mm) criterion.Results: For all patients, no noticeable difference in RFDs was observed amongst APvCT, vCT, and pCT except in cCBCT, which showed a noticeable difference. The minimum DSC value was 0.96 and 0.39 for contours in APvCT and vCT respectively. The average value of mDTA for APvCT was 0.01 cm for clinical target volume and ≤0.01 cm for organs at risk, which increased to 0.18 cm and ≤0.52 cm for vCT. The mean GPR value was 90.9%, 64.5%, and 67.0% for APvCT versus cCBCT, vCT versus cCBCT, and APvCT versus vCT, respectively. When recalculated on APvCT, the adaptive cCBCT and vCT plans resulted in mean GPRs of 89.5 ± 5.1% and 65.9 ± 19.1%, respectively. The mean DSC values for 80.0%, 90.0%, 95.0%, 98.0%, and 100.0% isodose volumes were 0.97, 0.97, 0.97, 0.95, and 0.91 for recalculated cCBCT plans, and 0.89, 0.88, 0.87, 0.85, and 0.81 for recalculated vCT plans. Hausdorff distance for the 100.0% isodose volume in some cases of recalculated cCBCT plans on APvCT exceeded 1.00 cm.Conclusions: APvCT contours showed good agreement with reference contours of cCBCT which indicates anatomy preservation in APvCT. A vCT with erroneous anatomy can result in an incorrect adaptive plan. Further, slightly lower values of GPR between the APvCT and cCBCT-based adaptive plans can be explained by the difference in the cCBCT's SPR RFD from the pCT.
  •  
8.
  • Kjellsson Lindblom, Emely, et al. (författare)
  • Impact of SBRT fractionation in hypoxia dose painting - accounting for heterogeneous and dynamic tumour oxygenation
  • 2019
  • Ingår i: Medical physics (Lancaster). - : Wiley. - 0094-2405 .- 2473-4209. ; 46:5, s. 2512-2521
  • Tidskriftsartikel (refereegranskat)abstract
    • PurposeTumor hypoxia, often found in nonsmall cell lung cancer (NSCLC), implies an increased resistance to radiotherapy. Pretreatment assessment of tumor oxygenation is, therefore, warranted in these patients, as functional imaging of hypoxia could be used as a basis for dose painting. This study aimed at investigating the feasibility of using a method for calculating the dose required in hypoxic subvolumes segmented on 18F‐HX4 positron emission tomography (PET) imaging of NSCLC.MethodsPositron emission tomography imaging data based on the hypoxia tracer 18F‐HX4 of 19 NSCLC patients were included in the study. Normalized tracer uptake was converted to oxygen partial pressure (pO2) and hypoxic target volumes (HTVs) were segmented using a threshold of 10 mmHg. Uniform doses required to overcome the hypoxic resistance in the target volumes were calculated based on a previously proposed method taking into account the effect of interfraction reoxygenation, for fractionation schedules ranging from extremely hypofractionated stereotactic body radiotherapy (SBRT) to conventionally fractionated radiotherapy.ResultsGross target volumes ranged between 6.2 and 859.6 cm3, and the hypoxic fraction < 10 mmHg between 1.2% and 72.4%. The calculated doses for overcoming the resistance of cells in the HTVs were comparable to those currently prescribed in clinical practice as well as those previously tested in feasibility studies on dose escalation in NSCLC. Depending on the size of the HTV and the distribution of pO2, HTV doses were calculated as 43.6–48.4 Gy for a three‐fraction schedule, 51.7–57.6 Gy for five fractions, and 59.5–66.4 Gy for eight fractions. For patients in whom the HTV pO2 distribution was more favorable, a lower dose was required despite a bigger volume. Tumor control probability was lower for single‐fraction schedules, while higher levels of tumor control probability were found for schedules employing several fractions.ConclusionsThe method to account for heterogeneous and dynamic hypoxia in target volume segmentation and dose prescription based on 18F‐HX4‐PET imaging appears feasible in NSCLC patients. The distribution of oxygen partial pressure within HTV could impact the required prescribed dose more than the size of the volume.
  •  
9.
  • Liamsuwan, Thiansin, et al. (författare)
  • Microdosimetry of proton and carbon ions
  • 2014
  • Ingår i: Medical physics (Lancaster). - : Wiley. - 0094-2405 .- 2473-4209. ; 41:8, s. 239-250
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To investigate microdosimetry properties of 160 MeV/u protons and 290 MeV/u C-12 ion beams in small volumes of diameters 10-100 nm. Methods: Energy distributions of primary particles and nuclear fragments in the beams were calculated from simulations with the general purpose code SHIELD-HIT, while energy depositions by monoenergetic ions in nanometer volumes were obtained from the event-by-event Monte Carlo track structure ion code PITS99 coupled with the electron track structure code KURBUC. Results: The results are presented for frequencies of energy depositions in cylindrical targets of diameters 10-100 nm, dose distributions (y) over bar (D) in lineal energy y, and dose-mean lineal energies YD For monoenergetic ions, the hp was found to increase with an increasing target size for high-linear energy transfer (LET) ions, but decrease with an increasing target size for low-LET ions. Compared to the depth dose profile of the ion beams, the maximum of the hp depth profile for the 160 MeV proton beam was located at similar to 0.5 cm behind the Bragg peak maximum, while the PD peak of the 290 MeV/u C-12 beam coincided well with the peak of the absorbed dose profile. Differences between the (y) over bar (D) and dose-averaged linear energy transfer (LETD) were large in the proton beam for both target volumes studied, and in the C-12 beam for the 10 nm diameter cylindrical volumes. The (y) over bar (D) determined for 100 run diameter cylindrical volumes in the C-12 beam was approximately equal to the LETD. The contributions from secondary particles to the (y) over bar (D) of the beams are presented, including the contributions from secondary protons in the proton beam and from fragments with atomic number Z = 1-6 in the C-12 beam. Conclusions: The present investigation provides an insight into differences in energy depositions in subcellular-size volumes when irradiated by proton and carbon ion beams. The results are useful for characterizing ion beams of practical importance for biophysical modeling of radiation-induced DNA damage response and repair in the depth profiles of protons and carbon ions used in radiotherapy.
  •  
10.
  • Mavroidis, Panayiotis, et al. (författare)
  • Analysis of fractionation correction methodologies for multiple phase treatment plans in radiation therapy
  • 2013
  • Ingår i: Medical physics (Lancaster). - : Wiley. - 0094-2405 .- 2473-4209. ; 40:3, s. 031715-
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Radiation therapy is often delivered by multiple sequential treatment plans. For an accurate radiobiological evaluation of the overall treatment, fractionation corrections to each dose distribution must be applied before summing the three-dimensional dose matrix of each plan since the simpler approach of performing the fractionation correction to the total dose-volume histograms, obtained by the arithmetical sum of the different plans, becomes inaccurate for more heterogeneous dose patterns. In this study, the differences between these two fractionation correction methods, named here as exact (corrected before) and approximate (after summation), respectively, are assessed for different cancer types. Methods: Prostate, breast, and head and neck (HN) tumor patients were selected to quantify the differences between two fractionation correction methods (the exact vs the approximate). For each cancer type, two different treatment plans were developed using uniform (CRT) and intensity modulated beams (IMRT), respectively. The responses of the target and normal tissue were calculated using the Poisson linear-quadratic-time model and the relative seriality model, respectively. All treatments were radiobiologically evaluated and compared using the complication-free tumor control probability (P+), the biologically effective uniform dose ((D) double under bar) together with common dosimetric criteria. Results: For the prostate cancer patient, an underestimation of around 14%-15% in P+ was obtained when the fractionation correction was applied after summation compared to the exact approach due to significant biological and dosimetric variations obtained between the two fractionation correction methods in the involved lymph nodes. For the breast cancer patient, an underestimation of around 3%-4% in the maximum dose in the heart was obtained. Despite the dosimetric differences in this organ, no significant variations were obtained in treatment outcome. For the HN tumor patient, an underestimation of about 5% in treatment outcome was obtained for the CRT plan as a result of an underestimation of the planning target volume control probability by about 10%. An underestimation of about 6% in the complication probability of the right parotid was also obtained. For all the other organs at risk, dosimetric differences of up to 4% were obtained but with no significant impact in the expected clinical outcome. However, for the IMRT plan, an overestimation in P+ of 4.3% was obtained mainly due to an underestimation of the complication probability of the left and right parotids (2.9% and 5.8%, respectively). Conclusions: The use of the exact fractionation correction method, which is applying fractionation correction on the separate dose distributions of a multiple phase treatment before their summation was found to have a significant expected clinical impact. For regions of interest that are irradiated with very heterogeneous dose distributions and significantly different doses per fraction in the different treatment phases, the exact fractionation correction method needs to be applied since a significant underestimation of the true patient outcome can be introduced otherwise.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 34
Typ av publikation
tidskriftsartikel (30)
konferensbidrag (3)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (27)
övrigt vetenskapligt/konstnärligt (7)
Författare/redaktör
Mavroidis, Panayioti ... (10)
Toma-Daşu, Iuliana (7)
Brahme, Anders (6)
Papanikolaou, N (4)
Dasu, Alexandru (4)
Bassler, Niels (4)
visa fler...
Papanikolaou, Nikos (4)
Kempe, Johanna (3)
Gudowska, Irena (3)
Toma-Daşu, Iuliana, ... (3)
Lind, Bengt K (2)
Traneus, Erik (2)
Holmberg, Rickard (2)
Ureba, Ana (2)
Benmakhlouf, Hamza (2)
Stathakis, S (2)
Shi, C (2)
Costa Ferreira, Brig ... (2)
Ferreira, B. C. (1)
Eriksson, Kjell (1)
Wesolowska, Paulina (1)
Izewska, Joanna (1)
Svensson, Roger (1)
Bujila, Robert (1)
Dasu, Alexandru, 197 ... (1)
Siegbahn, Albert (1)
Andreassen, Björn (1)
Svensson, R (1)
Strååt, Sara Janek (1)
Näfstadius, Peder (1)
Andreo, Pedro (1)
Palmans, Hugo (1)
Poludniowski, Gavin (1)
Wersäll, Peter (1)
Baltas, D (1)
Fredriksson, Albin (1)
Sempau, Josep (1)
Lindborg, Lennart (1)
Witt Nyström, Petra (1)
Zimmerman, Jens (1)
Karabis, A (1)
Zamboglou, N (1)
Georg, Dietmar (1)
Toma-Dasu, L (1)
Valdman, Alexander (1)
Romero-Exposito, Mai ... (1)
Stathakis, Sotirios (1)
Liszka, Malgorzata (1)
Falowska-Pietrzak, O ... (1)
Giantsoudi, D. (1)
visa färre...
Lärosäte
Karolinska Institutet (30)
Uppsala universitet (5)
Linköpings universitet (3)
Umeå universitet (1)
Kungliga Tekniska Högskolan (1)
Språk
Engelska (33)
Odefinierat språk (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (22)
Naturvetenskap (10)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy