SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0094 2405 OR L773:2473 4209 ;pers:(Brahme Anders)"

Sökning: L773:0094 2405 OR L773:2473 4209 > Brahme Anders

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andreassen, Björn, et al. (författare)
  • Fast IMRT with narrow high energy scanned photon beams
  • 2011
  • Ingår i: Medical physics (Lancaster). - : Wiley. - 0094-2405. ; 38:8, s. 4774-4784
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Since the first publications on intensity modulated radiation therapy (IMRT) in the early 1980s almost all efforts have been focused on fairly time consuming dynamic or segmental multileaf collimation. With narrow fast scanned photon beams, the flexibility and accuracy in beam shaping increases, not least in combination with fast penumbra trimming multileaf collimators. Previously, experiments have been performed with full range targets, generating a broad bremsstrahlung beam, in combination with multileaf collimators or material compensators. In the present publication, the first measurements with fast narrow high energy (50 MV) scanned photon beams are presented indicating an interesting performance increase even though some of the hardware used were suboptimal. Methods: Inverse therapy planning was used to calculate optimal scanning patterns to generate dose distributions with interesting properties for fast IMRT. To fully utilize the dose distributional advantages with scanned beams, it is necessary to use narrow high energy beams from a thin bremsstrahlung target and a powerful purging magnet capable of deflecting the transmitted electron beam away from the generated photons onto a dedicated electron collector. During the present measurements the scanning system, purging magnet, and electron collimator in the treatment head of the MM50 racetrack accelerator was used with 3-6 mm thick bremsstrahlung targets of beryllium. The dose distributions were measured with diodes in water and with EDR2 film in PMMA. Monte Carlo simulations with GEANT4 were used to study the influence of the electrons transmitted through the target on the photon pencil beam kernel. Results: The full width at half-maximum (FWHM) of the scanned photon beam was 34 mm measured at isocenter, below 9.5 cm of water, 1 m from the 3 mm Be bremsstrahlung target. To generate a homogeneous dose distribution in a 10 x 10 cm(2) field, the authors used a spot matrix of 100 equal intensity beam spots resulting in a uniformity of collimated 80%-20% penumbra of 9 mm at a primary electron energy of 50 MeV. For the more complex cardioid shaped dose distribution, they used 270 spots, which at a pulse repetition frequency of 200 Hz is completed every 1.36 s. Conclusions: The present measurements indicate that the use of narrow scanned photon beams is a flexible and fast method to deliver advanced intensity modulated beams. Fast scanned photon IMRT should, therefore, be a very interesting modality in the delivery of biologically optimized radiation therapy with the possibility for in vivo treatment verification with PET-CT imaging.
  •  
2.
  • Kempe, Johanna, et al. (författare)
  • Depth absorbed dose and LET distributions of therapeutic 1H, 4He, 7Li, and 12C beams.
  • 2007
  • Ingår i: Med Phys. - : Wiley. - 0094-2405. ; 34:1, s. 183-92
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The depth absorbed dose and LET (linear energy transfer) distribution of different ions of clinical interest such as 1H, 4He, 7Li, and 12C ions have been investigated using the Monte Carlo code SHIELD-HIT. The energies of the projectiles correspond to ranges in water and soft tissue of approximately 260 mm. The depth dose distributions of the primary particles and their secondaries have been calculated and separated with regard to their low and high LET components. A LET value below 10 eV/nm can generally be regarded as low LET and sparsely ionizing like electrons and photons. The high LET region may be assumed to start at 20 eV/nm where on average two double-strand breaks can be formed when crossing the periphery of a nucleosome, even though strictly speaking the LET limits are not sharp and ought to vary with the charge and mass of the ion. At the Bragg peak of a monoenergetic high energy proton beam, less than 3% of the total absorbed dose is comprised of high LET components above 20 eV/nm. The high LET contribution to the total absorbed dose in the Bragg peak is significantly larger with increasing ion charge as a natural result of higher stopping power and lower range straggling. The fact that the range straggling and multiple scattering are reduced by half from hydrogen to helium increases the possibility to accurately deposit only the high LET component in the tumor with negligible dose to organs at risk. Therefore, the lateral penumbra is significantly improved and the higher dose gradients of 7Li and 12C ions both longitudinally and laterally will be of major advantage in biological optimized radiation therapy. With increasing charge of the ion, the high LET absorbed dose in the beam entrance and the plateau regions where healthy normal tissues are generally located is also increased. The dose distribution of the high LET components in the 7Li beam is only located around the Bragg peak, characterized by a Gaussian-type distribution. Furthermore, the secondary particles produced by high energy 7Li ions in tissuelike media have mainly low LET character both in front of and beyond the Bragg peak.
  •  
3.
  •  
4.
  • Kempe, Johanna, et al. (författare)
  • Energy-range relation and mean energy variation in therapeutic particle beams
  • 2008
  • Ingår i: Medical physics (Lancaster). - : Wiley. - 0094-2405. ; 35:1, s. 159-170
  • Tidskriftsartikel (refereegranskat)abstract
    • Analytical expressions for the mean energy and range of therapeutic light ion beams and low- and high-energy electrons have been derived, based on the energy dependence of their respective stopping powers. The new mean energy and range relations are power-law expressions relevant for light ion radiation therapy, and are based on measured practical ranges or known tabulated stopping powers and ranges for the relevant incident particle energies. A practical extrapolated range, Rp, for light ions was defined, similar to that of electrons, which is very closely related to the extrapolated range of the primary ions. A universal energy-range relation for light ions and electrons that is valid for all material mixtures and compounds has been developed. The new relation can be expressed in terms of the range for protons and alpha particles, and is found to agree closely with experimental data in low atomic number media and when the difference in the mean ionization energy is low. The variation of the mean energy with depth and the new energy-range relation are useful for accurate stopping power and mass scattering power calculations, as well as for general particle transport and dosimetry applications.
  •  
5.
  • Mavroidis, Panayiotis, et al. (författare)
  • Expected Clinical Impact of the Differences Between Planned and Delivered IMRT Dose Distributions
  • 2007
  • Ingår i: Proceedings in 49th AAPM Annual Meeting, Minneapolis, Minnesota, USA, July 22-26, 2007. - : Wiley.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Purpose: Due to the highly conformal distributions that can be obtained with intensity modulated radiation therapy (IMRT), any discrepancy between the intended and delivered distributions would likely affect the clinical outcome. Consequently, there is a need for a measure that would quantify those differences in terms of a change in the expected clinical outcome.Material and Methods: To evaluate such a measure, the case of a cervix cancer was used where the bladder and rectum, are proximal and partially overlapping with the internal target volume. A solid phantom simulating the pelvic anatomy was fabricated and a treatment plan was developed to deliver the prescribed dose to the phantom. The phantom was then irradiated with films positioned in several transverse planes. The racetrack microtron at 50MV was used in the treatment planning and delivery processes. The dose distribution delivered was analyzed based on the film measurements and compared against the treatment plan. The differences in the measurements were evaluated using both physical and biological criteria.Results: For the computerized treatment plan, the maximum value of P+ was 84.1%, for a mean dose to the ITV of = 93.3Gy, associated relative standard deviation D/ = 16.8% and biologically effective uniform dose, ITV of 89.2 Gy. The delivered dose distribution from all the beams produced a P+ value of 77.0% for ITV = 93.2Gy, D/ = 19.0% and ITV of 83.5 Gy.Discussion and Conclusions: Whereas the physical comparison of dose distributions can assess the geometric accuracy of delivery, it does not reflect the clinical impact of any measured dose discrepancies. With highly conformal IMRT, the accuracy of the patient setup and treatment delivery, are critical for the success of the treatment. A method is proposed to evaluate the precision of the delivered plan based on changes in complication and control rates as they relate to uncertainties in dose delivery.
  •  
6.
  • Svensson, Roger, et al. (författare)
  • Design of a fast multileaf collimator for radiobiological optimized IMRT with scanned beams of photons, electrons, and light ions.
  • 2007
  • Ingår i: Med Phys. - : Wiley. - 0094-2405. ; 34:3, s. 877-88
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Intensity modulated radiation therapy is rapidly becoming the treatment of choice for most tumors with respect to minimizing damage to the normal tissues and maximizing tumor control. Today, intensity modulated beams are most commonly delivered using segmental multileaf collimation, although an increasing number of radiation therapy departments are employing dynamic multileaf collimation. The irradiation time using dynamic multileaf collimation depends strongly on the nature of the desired dose distribution, and it is difficult to reduce this time to less than the sum of the irradiation times for all individual peak heights using dynamic leaf collimation [Svensson et al., Phys. Med. Biol. 39, 37–61 (1994)]. Therefore, the intensity modulation will considerably increase the total treatment time. A more cost-effective procedure for rapid intensity modulation is using narrow scanned photon, electron, and light ion beams in combination with fast multileaf collimator penumbra trimming. With this approach, the irradiation time is largely independent of the complexity of the desired intensity distribution and, in the case of photon beams, may even be shorter than with uniform beams. The intensity modulation is achieved primarily by scanning of a narrow elementary photon pencil beam generated by directing a narrow well focused high energy electron beam onto a thin bremsstrahlung target. In the present study, the design of a fast low-weight multileaf collimator that is capable of further sharpening the penumbra at the edge of the elementary scanned beam has been simulated, in order to minimize the dose or radiation response of healthy tissues. In the case of photon beams, such a multileaf collimator can be placed relatively close to the bremsstrahlung target to minimize its size. It can also be flat and thin, i.e., only 15–25 mm thick in the direction of the beam with edges made of tungsten or preferably osmium to optimize the sharpening of the penumbra. The low height of the collimator will minimize edge scatter from glancing incidence. The major portions of the collimator leafs can then be made of steel or even aluminum, so that the total weight of the multileaf collimator will be as low as 10 kg, which may even allow high-speed collimation in real time in synchrony with organ movements. To demonstrate the efficiency of this collimator design in combination with pencil beam scanning, optimal radiobiological treatments of an advanced cervix cancer were simulated. Different geometrical collimator designs were tested for bremsstrahlung, electron, and light ion beams. With a 10 mm half-width elementary scanned photon beam and a steel collimator with tungsten edges, it was possible to make as effective treatments as obtained with intensity modulated beams of full resolution, i.e., here 5 mm resolution in the fluence map. In combination with narrow pencil beam scanning, such a collimator may provide ideal delivery of photons, electrons, or light ions for radiation therapy synchronized to breathing and other organ motions. These high-energy photon and light ion beams may allow three-dimensional in vivo verification of delivery and thereby clinical implementation of the BIOART approach using Biologically Optimized three-dimensional in vivo predictive Assay based adaptive Radiation Therapy [Brahme, Acta Oncol. 42, 123–126 (2003)].
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy