SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0148 0227 ;pers:(Blomberg Lars)"

Sökning: L773:0148 0227 > Blomberg Lars

  • Resultat 1-10 av 29
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aikio, A T, et al. (författare)
  • On the origin of the high-altitude electric field fluctuations in the auroral zone
  • 1996
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 101:A12, s. 27157-27170
  • Tidskriftsartikel (refereegranskat)abstract
    • Intense fluctuations in the electric field at high altitudes in the auroral zone are frequently measured by the Viking satellite. We have made an analysis of the origin of electric and magnetic fluctuations in the frequency range of 0.1 - 1 Hz by assuming four different sources for the signals: (I) spatial structures, (2) spatial structures with a parallel potential drop below the satellite, (3) traveling; shear Alfven waves, and (4) interfering shear Alfven waves. We will shaw that these different sources of the signals may produce similar amplitude ratios and phase differences between the perpendicular electric and magnetic fields. Since the different sources have different frequency dependencies, this can be used as an additional test if the signals are broadband. In other cases, additional information is needed, for example, satellite particle measurements or ground; magnetic measurements. The ideas presented in the theory were tested for one Viking eveningside pass over Scandinavia, where ground-based magnetometer and EISCAT radar measurements were available. The magnetic conditions were active during this pass and several interfering shear Alfven waves were found. Also, a spatial structure with a parallel potential drop below the satellite was identified. The magnitude of the 10-km-wide potential drop was at least 2 kV and the upward field-aligned current 26 mu A m(-2) (value mapped to the ionospheric level). The held-aligned conductance was estimated as 1.3 - 2.2x10(-8) S m(-2).
  •  
2.
  • Andre, M, et al. (författare)
  • Ion energization mechanisms at 1700 km in the auroral region
  • 1998
  • Ingår i: JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS. - 0148-0227. ; 103:A3, s. 4199-4222
  • Tidskriftsartikel (refereegranskat)abstract
    • Observations obtained by the Freja satellite at altitudes around 1700 km in the high-latitude magnetosphere are used to study ion energization perpendicular to the geomagnetic field. Investigations of ions, electrons, plasma densities, electric and magnetic wave fields, and field-aligned currents are used to study O+ heating mechanisms. Three ion heating events are studied in detail, and 20 events are used in a detailed statistical study. More than 200 events are classified as belonging to one of four major types of ion heating and are ordered as a function of magnetic local time. The most common types of ion heating are associated with broadband low-frequency electric wave fields occurring at all local times. These waves cover frequencies from below one up to several hundred hertz and correspond to the most intense O+ energization. Heating by these waves at frequencies of the order of the O+ gyrofrequency at 25 Hz seems to be the important energization mechanism, causing O+ ion mean energies up to hundreds of eV. The broadband waves are associated with Alfven waves with frequencies up to at least a few hertz and with field-aligned currents. Other types of O+ energization events are less common. During these events the ions are heated by waves near the lower hybrid frequency or near half the proton gyrofrequency. These waves are generated by auroral electrons or in a few cases by precipitating ions.
  •  
3.
  •  
4.
  •  
5.
  • Cumnock, J. A., et al. (författare)
  • Interplanetary magnetic field control of theta aurora development
  • 2002
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202. ; 107:A7
  • Tidskriftsartikel (refereegranskat)abstract
    • [1] We ascertain the influence of the B-y component of the interplanetary magnetic field (IMF) on theta aurora evolution. During most cases where a transpolar arc is observed to move across the polar region, and form a theta aurora, there are brief (minutes) southward excursions of IMF B-z, however northward IMF is required prior to theta aurora formation. Observations show that theta aurora can form during strictly northward IMF with its motion consistent with a change in sign of IMF B-y. It is important to note that since transpolar arcs can persist for 20-30 min after the IMF turns southward, errors will occur in assigning instantaneous IMF conditions to snapshots'' of particular auroral patterns. We consider the entire evolution of the theta aurora and the changing IMF conditions. The influence of IMF B-y is best illustrated by examples which occur during steady northward IMF as compared to times when the IMF is northward on average. We show examples, provided by the Polar UV imager, when the IMF is steady northward. For one case, DMSP F13 and F14 provide in situ measurements of precipitating particles, ionospheric plasma flows and ion density. This unique data set enables us to analyze in detail the evolution of a theta aurora, in one case crossing the entire polar region. No sign change in B-z is needed for theta aurora formation.
  •  
6.
  • Eriksson, Stefan, et al. (författare)
  • Comparing a spherical harmonic model of the global electric field distribution with Astrid-2 observations
  • 2002
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202. ; 107:A11
  • Tidskriftsartikel (refereegranskat)abstract
    • [1] Electric field measurements provided by the double probe instrument on the Astrid-2 satellite are compared with the empirical Weimer electric field model for all magnetic local times, except between 11 and 13 MLT, and poleward of 55degrees corrected geomagnetic latitude (CGLat). We focus the model evaluation on its ability to predict the latitudinal locations of the convection reversal boundaries for two-cell convection patterns and to estimate the magnitude of the electric field above 55degrees CGLat. A total number of 780 polar cap passes are employed from the Northern Hemisphere between January and July 1999. The measured average electric field magnitude in the dawn-dusk meridian plane above 55degrees CGLat is generally 25% larger than the predicted field independent of the interplanetary magnetic field (IMF) direction. The model shows a better correspondence with the observed electric field for southward IMF than for northward IMF, with most cases centered around B-z = -1.5 nT and r = 0.88. However, the agreement for northward IMF is promising, and a few examples are shown to corroborate this fact. The observed and predicted convection reversal boundary locations along the satellite track for southward IMF are on the average found 2-3degrees CGLat apart in the dawn-dusk meridian plane but may be as far apart as 9degrees CGLat. An initial investigation of the relative timing of a 20-min averaging window for the IMF along the 20-25 min polar cap crossing suggests that a time-dependent transfer function may be found that applies a higher weight to the input solar wind data early in the pass and a lower weight later in the pass for an IMF window that corresponds to the first half of the crossing and the opposite weight versus time dependence for an IMF window corresponding to the last half of the crossing.
  •  
7.
  • Eriksson, Stefan, et al. (författare)
  • Lobe cell convection and field-aligned currents poleward of the region 1 current system
  • 2002
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202. ; 107:A8
  • Tidskriftsartikel (refereegranskat)abstract
    • [1] We present a case and statistical study of plasma convection in the Northern Hemisphere during summer conditions using electric field, magnetic field, and particle data taken during dawn-dusk directed orbits of the FAST satellite. To our knowledge, this set provides the most comprehensive combination of data as yet presented in support of lobe cell convection from an ionospheric perspective this far from the noon sector. In particular, we study the current systems and convection patterns for all passes in July 1997 that show evidence for six large-scale field-aligned currents (FACs) rather than the usual system of four FACs associated with the region 1/region 2 current systems. A total of 71 passes out of 232 in the study had the extra pair of FACs. The extra pair of FACs in 30 of the 71 cases lies either on the dawnside or on the duskside of the noon-midnight meridian, and their position is strongly correlated with the polarity of the IMF By (negative and positive, respectively). This is consistent with the IMF dependence of a three-cell convection pattern of coexisting merging, viscous, and lobe-type convection cells. The occurrence of the asymmetric FAC pair was also strongly linked to conditions of IMF |B-y/B-z | > 1. The extra pair of FACs in these cases was clearly associated with the lobe cell of the three-cell convection system. The remaining 41 cases had the pair of FACs straddling the noon-midnight meridian. The extra pair of FACs was often (20 cases out of 30) observed at magnetic local times more than three hours away from noon, rather than being confined to regions near noon and the typical location of the cusp. Such a current system consisting of a pair of FACs poleward of the nearest region 1 current is consistent with the IMF B-y-dependent global MHD model developed by Ogino et al. [1986] for southward IMF conditions, as well as with other magnetospheric and ionospheric convection models that include the effects of merging occuring simultaneously at both low-latitude dayside and high-latitude lobe and flank magnetopause reconnection sites. Finally, the presence of the additional FACs and three-cell convection well away from noon show that the entire dayside ionosphere is affected by IMF-dependent processes, rather than only a limited region around noon.
  •  
8.
  • Feldstein, Y I, et al. (författare)
  • Electromagnetic characteristics of the high-latitude ionosphere during the various phases of magnetic substorms
  • 1996
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 101:A9, s. 19921-19936
  • Tidskriftsartikel (refereegranskat)abstract
    • Model calculations of the electrodynamics of the high-latitude ionosphere are compared to measurements made by the Viking satellite during July-August 1986. The model calculations are based on the IZMEM procedure, where the electric field and currents in the ionosphere are given as functions of the interplanetary magnetic field. The events chosen correspond to the growth, the expansion, and the recovery phases of substorms. During the growth and expansion phases the correlation between the model results and the satellite data is rather good. During recovery phase the correlation is not as good. The correlation between modeled and observed quantities suggest that during growth and expansion phase the magnetosphere is mainly directly driven by the solar wind, whereas during recovery phase it is mainly driven by internal processes, i.e., loading-unloading. Best fit is obtained when averaging the measured quantities over a few minutes, which means adjusting the spatial resolution of the measurements to the resolution of the model. Different time delays between the interplanetary magnetic field observations and those of Viking were examined. Best agreement was obtained, not surprisingly, for time delays corresponding to the estimated information transit time from the solar wind spacecraft to the ionosphere.
  •  
9.
  • Frey, H U, et al. (författare)
  • Freja and ground-based analysis of inverted-V events
  • 1998
  • Ingår i: JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS. - 0148-0227. ; 103:A3, s. 4303-4314
  • Tidskriftsartikel (refereegranskat)abstract
    • During two campaigns, ground-based auroral observations were performed in coordination with Freja. The high temporal and spatial resolution of the satellite instruments as well as the real-time recording with a stereoscopic camera system from the ground enabled detailed comparison of small- and large-scale optical phenomena with particle and field data measured by the satellite. Three passes of the satellite over inverted-V auroral arcs and over precipitation regions with strong field-aligned electron spectra are investigated. Brightness modulations within auroral arcs coincide with modulations of primary electron fluxes. The dynamics of small-scale structures within arcs as well as the proper motion of arcs are analyzed and compared with electric fields measured by the satellite and with BARS radar measurements. Energy fluxes independently determined from the ground and from the satellite are used to calculate the field-aligned conductance. The results agree with predictions of the kinetic theory of the mirror force, if we allow for variations of the density and thermal energy of the electrons in the source region of the magnetosphere. Detailed comparison of electron spectra and electric and magnetic field perturbations provide evidence of different acceleration mechanisms for the electrons, electrostatic acceleration inside inverted-V's, and wave acceleration in transient regions.
  •  
10.
  • Kullen, A., et al. (författare)
  • Solar wind dependence of the occurrence and motion of polar auroral arcs : A statistical study
  • 2002
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202. ; 107:A11
  • Tidskriftsartikel (refereegranskat)abstract
    • [1] Polar UV images from a 3-month period in winter 1998-1999 are used for a statistical study of polar arcs. The study covers all auroral arcs that are located poleward of the northern auroral oval, and which are detectable by the UV imager. The arcs are examined with respect to their spatial and temporal behavior as well as to a possible connection to solar wind parameters using ACE satellite data. It is found that the majority of polar arcs appear during northward IMF, strong IMF magnitude, and high solar wind speed. A modified Akasofu-Perreault epsilon parameter with a cosine function instead of a sine function (nuB(2) cos(4) (theta/2)(l(0)(2)/mu(0))) combines these results. It correlates well with the occurrence frequency of polar arcs for long timescales. The location of polar arcs is strongly dependent on the sign of the IMF B-y component. Static polar arcs occur in the Northern Hemisphere on the dawn (dusk) side of the oval for negative (positive) IMF B-y, whereas poleward-moving arcs separate from the opposite side of the oval, and then move in the direction of IMF B-y. All polar arcs are sorted into five different categories according to their spatial structure and evolution: oval-aligned, bending, moving, midnight, and multiple arcs. Each polar arc type occurs for a characteristic combination of solar wind parameters. IMF clock angle changes seem to have a strong influence on what type of arc occurs. Oval-aligned arcs appear mainly during steady IMF, bending arcs after an IMF B-z sign change, and moving arcs after an IMF B-y sign change. For the rare midnight and multiple arc events, no characteristic IMF clock angle dependence has been found. The different types of clear polar arcs are discussed in the context of existing observational studies and transpolar arc models.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 29

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy