SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0161 5505 OR L773:1535 5667 ;pers:(Orlova Anna)"

Sökning: L773:0161 5505 OR L773:1535 5667 > Orlova Anna

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlgren, Sara, et al. (författare)
  • Targeting of HER2-Expressing Tumors Using 111In-ABY-025, a Second-Generation Affibody Molecule with a Fundamentally Reengineered Scaffold
  • 2010
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 51:7, s. 1131-1138
  • Tidskriftsartikel (refereegranskat)abstract
    • Overexpression of HER2 in breast carcinomas predicts response to trastuzumab therapy. Affibody molecules based on a non-immunoglobulin scaffold have demon-strated high potential for in vivo molecular imaging of HER2-expressing tumors. Re-engineering of the molecular scaffold has led to a second generation of optimized Affibody molecules, having a surface distinctly different from the parental protein domain from staphylococcal protein A. The new tracer showed further increased melting point, stability and overall hydrophilicity compared to the parental molecule, and was shown to be more amenable for chemical peptide synthesis. The goal of this study was to assess potential effects of this extensive re-engineering on HER2 targeting, using ABY-025, a DOTA conjugated variant of the novel tracer. Methods: 111In-ABY-025 was compared with previously evaluated parent HER2-binding Affibody tracers in vitro and in vivo. The in vivo behavior was further evaluated in mice bearing SKOV-3 xenografts, in rats and in cynomolgus macaques. Results: 111In-ABY-025 bound specifically to HER2 in vitro and in vivo. Direct comparison with the previous generation of HER2-binding tracers showed that ABY-025 retained excellent targeting properties. Rapid blood clearance was shown in mice, rats and macaques. A highly specific tumor uptake of 16.7 ± 2.5 %IA/g was seen at 4 h after injection. The tumor-to-blood ratio was 6.3 at 0.5 h, 88 at 4 h, and increased up to 3 days after injection. Gamma camera imaging of tumors was already possible 0.5 h after injection. Furthermore, repeated i.v. administration of ABY-025 did not induce antibody formation in rats. Conclusions: The biodistribution of 111In-ABY-025 was in remarkably good agreement with the parent tracers, despite profound re-engineering of the non-binding surface. The molecule displayed rapid blood clearance in all species investigated and excellent targeting capacity in tumor bearing mice, leading to high tumor-to-organ-ratios and high contrast imaging shortly after injection.
  •  
2.
  • Ahlgren, Sara, et al. (författare)
  • Targeting of HER2-expressing tumors with a site-specifically 99mTc-labeled recombinant affibody molecule, ZHER2:2395, with C-terminally engineered cysteine
  • 2009
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 50:5, s. 781-789
  • Tidskriftsartikel (refereegranskat)abstract
    • The detection of human epidermal growth factor receptor type 2 (HER2) expression in malignant tumors provides important information influencing patient management. Radionuclide in vivo imaging of HER2 may permit the detection of HER2 in both primary tumors and metastases by a single noninvasive procedure. Small (7 kDa) high-affinity anti-HER2 Affibody molecules may be suitable tracers for SPECT visualization of HER2-expressing tumors. The use of generator-produced (99m)Tc as a label would facilitate the prompt translation of anti-HER2 Affibody molecules into use in clinics. METHODS: A C-terminal cysteine was introduced into the Affibody molecule Z(HER2:342) to enable site-specific labeling with (99m)Tc. Two recombinant variants, His(6)-Z(HER2:342)-Cys (dissociation constant [K(D)], 29 pM) and Z(HER2:2395)-Cys, lacking a His tag (K(D), 27 pM), were labeled with (99m)Tc in yields exceeding 90%. The binding specificity and the cellular processing of Affibody molecules were studied in vitro. Biodistribution and gamma-camera imaging studies were performed in mice bearing HER2-expressing xenografts. RESULTS: (99m)Tc-His(6)-Z(HER2:342)-Cys was capable of targeting HER2-expressing SKOV-3 xenografts in SCID mice, but the liver radioactivity uptake was high. A series of comparative biodistribution experiments indicated that the presence of the His tag caused elevated accumulation in the liver. (99m)Tc-Z(HER2:2395)-Cys, not containing a His tag, showed low uptake in the liver and high and specific uptake in HER2-expressing xenografts. Four hours after injection, the radioactivity uptake values (percentage of injected activity per gram of tissue [%IA/g]) were 6.9 +/- 2.5 (mean +/- SD) %IA/g in LS174T xenografts (moderate level of HER2 expression) and 15 +/- 3 %IA/g in SKOV-3 xenografts (high level of HER2 expression). The corresponding tumor-to-blood ratios were 88 +/- 24 and 121 +/- 24, respectively. Both LS174T and SKOV-3 xenografts were clearly visualized with a clinical gamma-camera 1 h after injection of (99m)Tc-Z(HER2:2395)-Cys. CONCLUSION: The Affibody molecule (99m)Tc-Z(HER2:2395)-Cys is a promising tracer for SPECT visualization of HER2-expressing tumors.
  •  
3.
  • Altai, Mohamed, et al. (författare)
  • 188Re-ZHER2:V2, a promising affibody-based targeting agent against HER2-expressing tumors : preclinical assessment
  • 2014
  • Ingår i: Journal of nuclear medicine : official publication, Society of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 55:11, s. 8-1842
  • Tidskriftsartikel (refereegranskat)abstract
    • UNLABELLED: Affibody molecules are small (7 kDa) nonimmunoglobulin scaffold proteins with favorable tumor-targeting properties. Studies concerning the influence of chelators on biodistribution of (99m)Tc-labeled Affibody molecules demonstrated that the variant with a C-terminal glycyl-glycyl-glycyl-cysteine peptide-based chelator (designated ZHER2:V2) has the best biodistribution profile in vivo and the lowest renal retention of radioactivity. The aim of this study was to evaluate (188)Re-ZHER2:V2 as a potential candidate for radionuclide therapy of human epidermal growth factor receptor type 2 (HER2)-expressing tumors.METHODS: ZHER2:V2 was labeled with (188)Re using a gluconate-containing kit. Targeting of HER2-overexpressing SKOV-3 ovarian carcinoma xenografts in nude mice was studied for a dosimetry assessment.RESULTS: Binding of (188)Re-ZHER2:V2 to living SKOV-3 cells was demonstrated to be specific, with an affinity of 6.4 ± 0.4 pM. The biodistribution study showed a rapid blood clearance (1.4 ± 0.1 percentage injected activity per gram [%ID/g] at 1 h after injection). The tumor uptake was 14 ± 2, 12 ± 2, 5 ± 2, and 1.8 ± 0.5 %IA/g at 1, 4, 24, and 48 h after injection, respectively. The in vivo targeting of HER2-expressing xenografts was specific. Already at 4 h after injection, tumor uptake exceeded kidney uptake (2.1 ± 0.2 %IA/g). Scintillation-camera imaging showed that tumor xenografts were the only sites with prominent accumulation of radioactivity at 4 h after injection. Based on the biokinetics, a dosimetry evaluation for humans suggests that (188)Re-ZHER2:V2 would provide an absorbed dose to tumor of 79 Gy without exceeding absorbed doses of 23 Gy to kidneys and 2 Gy to bone marrow. This indicates that future human radiotherapy studies may be feasible.CONCLUSION: (188)Re-ZHER2:V2 can deliver high absorbed doses to tumors without exceeding kidney and bone marrow toxicity limits.
  •  
4.
  • Altai, Mohamed, et al. (författare)
  • Feasibility of Affibody-Based Bioorthogonal Chemistry Mediated Radionuclide Pretargeting
  • 2016
  • Ingår i: Journal of Nuclear Medicine. - : SOC NUCLEAR MEDICINE. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 57:3, s. 431-436
  • Tidskriftsartikel (refereegranskat)abstract
    • Affibody molecules constitute a new class of probes for radionuclide tumor targeting. The small size of Affibody molecules is favorable for rapid localization in tumors and clearance from circulation. However, high renal reabsorption of Affibody molecules prevents the use of residualizing radiometals, including several promising low-energy (beta- and alpha-emitters, for radionuclide therapy. We tested a hypothesis that Affibody-based pretargeting mediated by a bioorthogonal interaction between trans-cyclooctene (TCO) and tetrazine would provide higher accumulation of radiometals in tumor xenografts than in the kidneys. Methods: TCO was conjugated to the anti-human epidermal growth factor receptor 2 (HER2) Affibody molecule Z(2395). DOTA-tetrazine was labeled with In-111 and Lu-177. In vitro pretargeting was studied in HER2-expressing SKOV-3 and BT474 cell lines. In vivo studies were performed on BALB/C nu/nu mice bearing SKOV-3 xenografts. Results: I-125-Z(2395)-TCO bound specifically to HER2-expressing cells in vitro with an affinity of 45 +/- 16 pM. In-111-tetrazine bound specifically and selectively to Z(2325)-TCO pretreated cells. In vivo studies demonstrated HER2-specific I-125-Z(2395)-TCO accumulation in xenografts. TCO-mediated In-111-tetrazine localization was shown in tumors, when the radiolabeled tracer was injected 4 h after an injection of Z(2395)-TCO. At 1 h after injection, the tumor uptake of In-111-tetrazine and Lu-177-tetrazine was approximately 2-fold higher than the renal uptake. Pretargeting provided more than a 56-fold reduction of renal uptake of In-111 in comparison with direct targeting. Conclusion: The feasibility of Affibody-based bioorthogonal chemistry-mediated pretargeting was demonstrated. The use of pre-targeting provides a substantial reduction of radiometal accumulation in kidneys, creating preconditions for palliative radionuclide therapy.
  •  
5.
  • Baum, Richard P, et al. (författare)
  • Molecular imaging of HER2-expressing malignant tumors in breast cancer patients using synthetic 111In- or 68Ga-labeled affibody molecules
  • 2010
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 51:6, s. 892-897
  • Tidskriftsartikel (refereegranskat)abstract
    • The clinical utility of a human epidermal growth factor receptor 2 (HER2)-targeting Affibody molecule for detection and characterization of HER2-positive lesions was investigated in patients with recurrent metastatic breast cancer. METHODS: Three patients received (111)In- or (68)Ga-labeled DOTA(0)-Z(HER2:342-pep2) (ABY-002). gamma-Camera, SPECT, or PET/CT images were compared with earlier (18)F-FDG PET/CT results. RESULTS: Administration of radiolabeled ABY-002 was well tolerated. Blood kinetics of radiolabeled ABY-002 showed a first half-life of 4-14 min, second half-life of 1-4 h, and third half-life of 12-18 h. Radiolabeled ABY-002 detected 9 of 11 (18)F-FDG-positive metastases as early as 2-3 h after injection. CONCLUSION: Molecular imaging using (111)In- or (68)Ga-labeled ABY-002 has the potential to localize metastatic lesions in vivo, adds qualitative information not available today by conventional imaging techniques, and may allow the HER2 status to be determined for metastases not amenable to biopsy. To our knowledge, this is the first report on clinical imaging data obtained with a non-immunoglobulin-based scaffold protein.
  •  
6.
  • Bragina, Olga, et al. (författare)
  • Phase I study of 99mTc-ADAPT6, a scaffold protein-based probe for visualization of HER2 expression in breast cancer
  • 2021
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 62:4, s. 493-499
  • Tidskriftsartikel (refereegranskat)abstract
    • Radionuclide molecular imaging of human epidermal growth factor (HER2) expression may be helpful to stratify breast and gastroesophageal cancer patients for HER2-targeting therapies. ADAPTs (albumin-binding domain derived affinity proteins) are a new type of small (46-59 amino acids) proteins useful as probes for molecular imaging. The aim of this first-in-human study was to evaluate biodistribution, dosimetry, and safety of the HER2-specific 99mTc-ADAPT6.METHODS: Twenty-nine patients with primary breast cancerwere included. In 22 patients with HER2-positive (n = 11) or HER2-negative (n = 11) histopathology an intravenous injection with 385±125 MBq 99mTc-ADAPT6 was performed, randomized to an injected protein mass of either 500 µg (n = 11) or 1000 µg (n = 11). Planar scintigraphy followed by SPECT imaging was performed after 2, 4, 6 and 24 h. An additional cohort (n = 7) was injected with 165±29 MBq (injected protein mass 250 µg) and imaging was performed after 2 h only.RESULTS: Injections of 99mTc-ADAPT6 at all injected mass levels were well tolerated and not associated with adverse effects. 99mTc-ADAPT6 cleared rapidly from blood and most other tissues. The normal organs with the highest accumulation were kidney, liver and lung. Effective doses were 0.009±0.002 and 0.010±0.003 mSv/MBq for injected protein masses of 500 and 1000 µg, respectively. Injection of 500 µg resulted in excellent discrimination between HER2-positive and HER2-negative tumors already 2 h after injection (tumor-to-contralateral breast ratio was 37±19 vs 5±2, p<0.01). The tumor-to-contralateral breast ratios for HER2-positive tumors were significantly (p<0.05) higher for injected mass of 500 µg than for both 250 and 1000 µg.CONCLUSION: Injections of 99mTc-ADAPT6 are safe and associated with low absorbed and effective doses. Protein dose of 500 µg is preferable for discrimination between tumors with high and low expression of HER2. Further studies are justified to evaluate if 99mTc-ADAPT6 can be used as an imaging probe for stratification of patients for HER2-targeting therapy in the areas where PET imaging is not readily available.
  •  
7.
  • Bragina, Olga, et al. (författare)
  • Phase I Trial of 99mTc-(HE)3-G3, a DARPin-Based Probe for Imaging of HER2 Expression in Breast Cancer
  • 2022
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 63:4, s. 528-535
  • Tidskriftsartikel (refereegranskat)abstract
    • Radionuclide molecular imaging of human epidermal growth factor receptor type 2 (HER2) expression may enable a noninvasive discrimination between HER2-positive and HER2-negative breast cancers for stratification of patients for HER2-targeted treatments. DARPin (designed ankyrin repeat proteins) G3 is a small (molecular weight, 14 kDa) scaffold protein with picomolar affinity to HER2. The aim of this first-in-humans study was to evaluate the safety, biodistribution, and dosimetry of 99mTc-(HE)3-G3.Methods: Three cohorts of patients with primary breast cancer (each including at least 4 patients with HER2-negative and 5 patients with HER2-positive tumors) were injected with 1,000, 2,000, or 3,000 μg of 99mTc-(HE)3-G3 (287 ± 170 MBq). Whole-body planar imaging followed by SPECT was performed at 2, 4, 6, and 24 h after injection. Vital signs and possible side effects were monitored during imaging and up to 7 d after injection.Results: All injections were well tolerated. No side effects were observed. The results of blood and urine analyses did not differ before and after studies. 99mTc-(HE)3-G3 cleared rapidly from the blood. The highest uptake was detected in the kidneys and liver followed by the lungs, breasts, and small intestinal content. The hepatic uptake after injection of 2,000 or 3,000 μg was significantly (P < 0.05) lower than the uptake after injection of 1,000 μg. Effective doses did not differ significantly between cohorts (average, 0.011 ± 0.004 mSv/MBq). Tumor–to–contralateral site ratios for HER-positive tumors were significantly (P < 0.05) higher than for HER2-negative at 2 and 4 h after injection.Conclusion: Imaging of HER2 expression using 99mTc-(HE)3-G3 is safe and well tolerated and provides a low absorbed dose burden on patients. This imaging enables discernment of HER2-positive and HER2-negative breast cancer. Phase I study data justify further clinical development of 99mTc-(HE)3-G3.
  •  
8.
  • Krasniqi, Ahmet, et al. (författare)
  • Same-day imaging using small proteins : Clinical experience and translational prospects in oncology.
  • 2018
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 59:6, s. 885-891
  • Tidskriftsartikel (refereegranskat)abstract
    • Imaging of expression of therapeutic targets may enable patients' stratification for targeted treatments. The use of small radiolabeled probes based on the heavy-chain variable region of heavy-chain-only immunoglobulins or non-immunoglobulin scaffolds permits rapid localization of radiotracers in tumors and rapid clearance from normal tissues. This makes high-contrast imaging possible on the day of injection. This mini-review focuses on small proteins for radionuclide-based imaging that would allow same-day imaging, with the emphasis on clinical applications and promising preclinical developments within the field of oncology.
  •  
9.
  • Lindbo, Sarah, et al. (författare)
  • Radionuclide Tumor Targeting Using ADAPT Scaffold Proteins : Aspects of Label Positioning and Residualizing Properties of the Label
  • 2018
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 59:1, s. 93-99
  • Tidskriftsartikel (refereegranskat)abstract
    • Visualization of cancer-associated alterations of molecular phenotype using radionuclide imaging is a noninvasive approach to stratifying patients for targeted therapies. The engineered albumin-binding domain-derived affinity protein (ADAPT) is a promising tracer for radionuclide molecular imaging because of its small size (6.5 kDa), which satisfies the precondition for efficient tumor penetration and rapid clearance. Previous studies demonstrated that the human epidermal growth factor receptor type 2 (HER2)-targeting ADAPT6 labeled with radiometals at the N terminus is able to image HER2 expression in xenografts a few hours after injection. The aim of this study was to evaluate whether the use of a non-residualizing label or placement of the labels at the C terminus would further improve the targeting properties of ADAPT6. Methods: Two constructs, Cys(2)-ADAPT6 and Cys(59)-ADAPT6, having the (HE)(3)DANS sequence at the N terminus were produced and site-specifically labeled using In-111-DOTA or I-125-iodo-((4-hydroxyphenyl) ethyl) maleimide (HPEM). The conjugates were compared in vitro and in vivo. HER2-targeting properties and biodistribution were evaluated in BALB/C nu/nu mice bearing ovarian carcinoma cell (SKOV-3) xenografts. Results: Specific HER2 binding and high affinity were preserved after labeling. Both Cys(2)-ADAPT6 and Cys59-ADAPT6 were internalized slowly by HER2-expressing cancer cells. Depending on the label position, uptake at 4 h after injection varied from 10% to 22% of the injected dose per gram of tumor tissue. Regardless of terminus position, the I-125-HPEM label provided more than 140-fold lower renal uptake than the In-111-DOTA label at 4 after injection. The tumor-to-organ ratios were, in contrast, higher for both of the (111)InDOTA- labeled ADAPT variants in other organs. Tumor-to-blood ratios for In-111-labeled Cys(2)-ADAPT6 and Cys(59)-ADAPT6 did not differ significantly (250-280), but In-111-DOTA-Cys(59)-ADAPT6 provided significantly higher tumor-to-lung, tumor-to-liver, tumor-to-spleen, and tumor-to-muscle ratios. Radioiodinated variants had similar tumor-to-organ ratios, but I-125-HPEM-Cys(59)-ADAPT6 had significantly higher tumor uptake and a higher tumor-to-kidney ratio. Conclusion: Residualizing properties of the label strongly influence the targeting properties of ADAPT6. The position of the radiolabel influences targeting as well, although to a lesser extent. Placement of a label at the C terminus yields the best biodistribution features for both radiometal and radiohalogen labels. Low renal retention of the radioiodine label creates a precondition for radionuclide therapy using I-131-labeled HPEM-Cys(59)-ADAPT6.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy