SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0161 5505 OR L773:1535 5667 ;pers:(Widström Charles)"

Sökning: L773:0161 5505 OR L773:1535 5667 > Widström Charles

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahlgren, Sara, et al. (författare)
  • Targeting of HER2-expressing tumors with a site-specifically 99mTc-labeled recombinant affibody molecule, ZHER2:2395, with C-terminally engineered cysteine
  • 2009
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 50:5, s. 781-789
  • Tidskriftsartikel (refereegranskat)abstract
    • The detection of human epidermal growth factor receptor type 2 (HER2) expression in malignant tumors provides important information influencing patient management. Radionuclide in vivo imaging of HER2 may permit the detection of HER2 in both primary tumors and metastases by a single noninvasive procedure. Small (7 kDa) high-affinity anti-HER2 Affibody molecules may be suitable tracers for SPECT visualization of HER2-expressing tumors. The use of generator-produced (99m)Tc as a label would facilitate the prompt translation of anti-HER2 Affibody molecules into use in clinics. METHODS: A C-terminal cysteine was introduced into the Affibody molecule Z(HER2:342) to enable site-specific labeling with (99m)Tc. Two recombinant variants, His(6)-Z(HER2:342)-Cys (dissociation constant [K(D)], 29 pM) and Z(HER2:2395)-Cys, lacking a His tag (K(D), 27 pM), were labeled with (99m)Tc in yields exceeding 90%. The binding specificity and the cellular processing of Affibody molecules were studied in vitro. Biodistribution and gamma-camera imaging studies were performed in mice bearing HER2-expressing xenografts. RESULTS: (99m)Tc-His(6)-Z(HER2:342)-Cys was capable of targeting HER2-expressing SKOV-3 xenografts in SCID mice, but the liver radioactivity uptake was high. A series of comparative biodistribution experiments indicated that the presence of the His tag caused elevated accumulation in the liver. (99m)Tc-Z(HER2:2395)-Cys, not containing a His tag, showed low uptake in the liver and high and specific uptake in HER2-expressing xenografts. Four hours after injection, the radioactivity uptake values (percentage of injected activity per gram of tissue [%IA/g]) were 6.9 +/- 2.5 (mean +/- SD) %IA/g in LS174T xenografts (moderate level of HER2 expression) and 15 +/- 3 %IA/g in SKOV-3 xenografts (high level of HER2 expression). The corresponding tumor-to-blood ratios were 88 +/- 24 and 121 +/- 24, respectively. Both LS174T and SKOV-3 xenografts were clearly visualized with a clinical gamma-camera 1 h after injection of (99m)Tc-Z(HER2:2395)-Cys. CONCLUSION: The Affibody molecule (99m)Tc-Z(HER2:2395)-Cys is a promising tracer for SPECT visualization of HER2-expressing tumors.
  •  
2.
  • Borges, João Batista, et al. (författare)
  • Ventilation Distribution Studies Comparing Technegas and "Gallgas" Using (GaCl3)-Ga-68 as the Label
  • 2011
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 52:2, s. 206-209
  • Tidskriftsartikel (refereegranskat)abstract
    • Ventilation distribution can be assessed by SPECT with Technegas. This study was undertaken in piglets with different degrees of ventilation inhomogeneity to compare PET using Ga-68-labeled pseudogas or "Gallgas" with Technegas. Methods: Twelve piglets were studied in 3 groups: control, lobar obstruction, and diffuse airway obstruction. Two more piglets were assessed for lung volume (functional residual capacity). Results: In controls, SPECT and PET images showed an even distribution of radioactivity. With lobar obstruction, the absence of ventilation of the obstructed lobe was visible with both techniques. In diffuse airway obstruction, SPECT images showed an even distribution of radioactivity, and PET images showed more varied radioactivity over the lung. Conclusion: PET provides detailed ventilation distribution images and a better appreciation of ventilation heterogeneity. Gallgas with PET is a promising new diagnostic tool for the assessment of ventilation distribution.
  •  
3.
  • Lubberink, Mark, et al. (författare)
  • 110mIn-DTPA-D-Phe1-octreotide for imaging of neuroendocrine tumors with PET
  • 2002
  • Ingår i: Journal of Nuclear Medicine. - 0161-5505 .- 1535-5667. ; 43:10, s. 1391-7
  • Tidskriftsartikel (refereegranskat)abstract
    • The somatostatin analog diethylenetriaminepentaacetic acid (DTPA)-D-Phe1-octreotide labeled with 111In has been applied extensively for diagnosis of neuroendocrine tumors using SPECT or planar scintigraphy. However, the spatial resolution of planar scintigraphy and SPECT prohibits imaging of small tumors, and the quantification accuracy of both methods is limited. METHODS: We developed a method to prepare the positron-emitting radiopharmaceutical 110mIn-DTPA-D-Phe1-octreotide based on a commercially available kit. Phantom studies were done to investigate and compare the performance of 110mIn PET and 111In SPECT. A clinical imaging study using 110mIn-DTPA-D-Phe1-octreotide and PET was done to investigate the application of this radiopharmaceutical. RESULTS: An almost 3-fold better resolution and much better quantitative capabilities were found for 110mIn PET than for 111In SPECT. The clinical imaging study demonstrated the potential use of 110mIn-octreotide in PET to image tumors and quantify radioactivity uptake in humans using (110m)In-DTPA-D-Phe1-octreotide. CONCLUSION: PET with 110mIn-DTPA-D-Phe1-octreotide greatly improved detection of small tumors and offers a possibility of more accurate quantification of tumor uptake than can be obtained with 111In-DTPA-D-Phe1-octreotide and SPECT.
  •  
4.
  • Sandström, Mattias, et al. (författare)
  • Individualized dosimetry of kidney and bone marrow in patients undergoing 177Lu-DOTA-octreotate treatment
  • 2013
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 54:1, s. 33-41
  • Tidskriftsartikel (refereegranskat)abstract
    • The organs at risk in radionuclide therapy with 177Lu-octreotate are the bone marrow and the kidneys. The primary aim of this study was to develop an individualized dosimetry protocol for the bone marrow. The secondary aim was to identify those patients, undergoing fractionated therapy with 7.4 GBq/cycle, who first reached an accumulated dose of either 2 Gy to the bone marrow or 23 Gy to the kidneys. Methods: Two hundred patients with metastatic neuroendocrine tumors with high somatostatin receptor expression were included. After the administration of 7.4 GBq of 177Lu-octreotate, blood samples were drawn 6 times within the first 24 h. In 50 patients, additional blood samples were obtained at 96 and 168 h. Moreover, urine was collected from 30 patients during the first 24 h. Planar whole-body and SPECT/CT images over the abdomen were acquired at 24, 96, and 168 h after the infusion. Calculation of the absorbed radiation dose to the bone marrow was based on blood and urinary activity curves combined with organ-based analysis of the whole-body images. The absorbed dose to the kidney was calculated from the pharmacokinetic data obtained from SPECT/CT. Results: For a single cycle of 7.4 GBq, the absorbed dose to the bone marrow and the kidney ranged from 0.05 to 0.4 Gy and from 2 to 10 Gy, respectively. In 197 of 200 patients, the kidneys accumulated an absorbed dose of 23 Gy before the bone marrow reached 2 Gy. Between 2 and 10 cycles of 177Lu-octreotate could be administered before the upper dose limit for the individual patient was reached. Conclusion: A method based on repeated whole-body imaging in combination with blood and urinary activity data over time was developed to determine the absorbed dose to the bone marrow. The dose-limiting organ was the kidney in 197 of 200 patients. In 50% of the patients, more than 4 cycles of 7.4 GBq of 177Lu-octreotate could be administered, whereas 20% of the subjects were treated with fewer than 4 cycles. Individualized absorbed dose calculation is essential to optimize the therapy.
  •  
5.
  • Tolmachev, Vladimir, et al. (författare)
  • 111In-benzyl-DTPA-ZHER2:342, an affibody-based conjugate for in vivo imaging of HER2 expression in malignant tumors
  • 2006
  • Ingår i: Journal of Nuclear Medicine. - 0161-5505 .- 1535-5667. ; 47:5, s. 846-53
  • Tidskriftsartikel (refereegranskat)abstract
    • Data on expression of the HER2 (erbB-2) receptor in breast carcinoma make it possible to select the most efficient treatment. There are strong indications that HER2 expression possesses prognostic and predictive values in ovarian, prostate, and lung carcinomas as well. Visualization of HER2 expression using radionuclide targeting can provide important diagnostic information. The Affibody Z(HER2:342) is a short (approximately 7 kDa) phage-display-selected protein that binds HER2 with an affinity of 22 pmol/L. The goal of this study was to evaluate whether (111)In-labeled HER2:342 can be used for imaging of HER2 overexpression in vivo. METHODS: Z(HER2:342) was labeled with (111)In via isothiocyanate-benzyl-DTPA (DTPA is diethylenetriaminepentaacetic acid) and the conjugate was characterized in vitro and in vivo. RESULTS: (111)In-Benzyl-DTPA-Z(HER2:342) preserved the capacity to bind living HER2-expressing cells specifically. The affinity of In-benzyl-DTPA-Z(HER2:342) to HER2 was 21 pmol/L according to surface plasmon resonance measurements. In nude mice bearing HER2-expressing SKOV-3 xenografts, a tumor uptake of 12% +/- 3% injected activity per gram and a tumor-to-blood ratio of about 100 were obtained 4 h after injection. Tumor uptake in vivo was receptor specific, as it could be blocked with an excess of nonlabeled Z(HER2:342). HER2-expressing xenografts were clearly imaged 4 h after injection using a gamma-camera. CONCLUSION: (111)In-Benzyl-DTPA-Z(HER2:342) is a promising candidate for visualization of HER2 expression in carcinomas, using the single-photon detection technique.
  •  
6.
  • Wållberg, H, et al. (författare)
  • Engineering of C-terminal cysteine-containing peptide-based chelators improves biodistribution of HER2-targeting 99mTc-labeled Affibody molecules
  • 2011
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 52:3, s. 461-469
  • Tidskriftsartikel (refereegranskat)abstract
    • Affibody molecules are a recently developed class of targeting proteins based on a nonimmunoglobulin scaffold. The small size (7 kDa) and subnanomolar affinity of Affibody molecules enables high-contrast imaging of tumor-associated molecular targets, particularly human epidermal growth factor receptor type 2 (HER2). 99mTc as a label offers advantages in clinical practice, and earlier studies demonstrated that 99mTc-labeled recombinant Affibody molecules with a C-terminal cysteine could be used for HER2 imaging. However, the renal retention of radioactivity exceeded tumor uptake, which might complicate imaging of metastases in the lumbar region. The aim of this study was to develop an agent with low renal uptake and preserved tumor targeting. Methods: A series of recombinant derivatives of the HER2-binding ZHER2:342 Affibody molecule with a C-terminal chelating sequence, –GXXC (X denoting glycine, serine, lysine, or glutamate), was designed. The constructs were labeled with 99mTc and evaluated in vitro and in vivo. Results: All variants were stably labeled with 99mTc, with preserved capacity to bind specifically to HER2-expressing cells in vitro and in vivo. The composition of the chelating sequence had a clear influence on the cellular processing and biodistribution properties of the Affibody molecules. The best variant, 99mTc-ZHER2:V2, with the C-terminal chelating sequence –GGGC, provided the lowest radioactivity retention in all normal organs and tissues including the kidneys. 99mTc-ZHER2:V2 displayed high uptake of radioactivity in HER2-expressing xenografts, 22.6 ± 4.0 and 7.7 ± 1.5 percentage injected activity per gram of tissue at 4 h after injection in SKOV-3 (high HER2 expression) and DU-145 (low HER2 expression) tumors, respectively. In both models, the tumor uptake exceeded the renal uptake. Conclusion: These results demonstrate that the biodistribution properties of recombinant 99mTc-labeled Affibody molecules can be optimized by modification of the C-terminal cysteine-containing chelating sequence. 99mTc-ZHER2:V2 is a promising candidate for further development as a diagnostic radiopharmaceutical for imaging of HER2-expressing tumors. These results may be useful for the development of imaging agents based on other Affibody molecules and, hopefully, other scaffolds.
  •  
7.
  • Wållberg, Helena, et al. (författare)
  • Molecular Design and Optimization of Tc-99m-Labeled Recombinant Affibody Molecules Improves Their Biodistribution and Imaging Properties
  • 2011
  • Ingår i: Journal of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 52:3, s. 461-469
  • Tidskriftsartikel (refereegranskat)abstract
    • Affibody molecules are a recently developed class of targeting proteins based on a nonimmunoglobulin scaffold. The small size (7 kDa) and subnanomolar affinity of Affibody molecules enables high-contrast imaging of tumor-associated molecular targets, particularly human epidermal growth factor receptor type 2 (HER2). Tc-99m as a label offers advantages in clinical practice, and earlier studies demonstrated that Tc-99m-labeled recombinant Affibody molecules with a C-terminal cysteine could be used for HER2 imaging. However, the renal retention of radioactivity exceeded tumor uptake, which might complicate imaging of metastases in the lumbar region. The aim of this study was to develop an agent with low renal uptake and preserved tumor targeting. Methods: A series of recombinant derivatives of the HER2-binding Z(HER2:342) Affibody molecule with a C-terminal chelating sequence, -GXXC (X denoting glycine, serine, lysine, or glutamate), was designed. The constructs were labeled with Tc-99m and evaluated in vitro and in vivo. Results: All variants were stably labeled with Tc-99m, with preserved capacity to bind specifically to HER2-expressing cells in vitro and in vivo. The composition of the chelating sequence had a clear influence on the cellular processing and biodistribution properties of the Affibody molecules. The best variant, Tc-99m-Z(HER2:V2), with the C-terminal chelating sequence -GGGC, provided the lowest radioactivity retention in all normal organs and tissues including the kidneys. Tc-99m-Z(HER2:V2) displayed high uptake of radioactivity in HER2-expressing xenografts, 22.6 +/- 4.0 and 7.7 +/- 1.5 percentage injected activity per gram of tissue at 4 h after injection in SKOV-3 (high HER2 expression) and DU-145 (low HER2 expression) tumors, respectively. In both models, the tumor uptake exceeded the renal uptake. Conclusion: These results demonstrate that the biodistribution properties of recombinant Tc-99m-labeled Affibody molecules can be optimized by modification of the C-terminal cysteine-containing chelating sequence. Tc-99m-Z(HER2:V2) is a promising candidate for further development as a diagnostic radiopharmaceutical for imaging of HER2-expressing tumors. These results may be useful for the development of imaging agents based on other Affibody molecules and, hopefully, other scaffolds.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy