SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0171 967X OR L773:1432 0827 ;pers:(Karlsson Magnus)"

Sökning: L773:0171 967X OR L773:1432 0827 > Karlsson Magnus

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Alwis, Gayani, et al. (författare)
  • Femoral Neck Bone Strength Estimated by Hip Structural Analysis (HSA) in Swedish Caucasians Aged 6-90 Years.
  • 2012
  • Ingår i: Calcified Tissue International. - : Springer Science and Business Media LLC. - 1432-0827 .- 0171-967X. ; 90:3, s. 174-185
  • Tidskriftsartikel (refereegranskat)abstract
    • Dual-energy X-ray absorptiometry hip scans of 1,760 population-based Caucasians, 599 girls and 642 boys aged 6-19 years and 270 women and 249 men aged 20-90 years, were analyzed with the hip structural analysis (HSA) software to present age- and sex-specific normative HSA data of the femoral neck (FN). Measured traits included bone mineral density (BMD), cross-sectional area (CSA), section modulus (Z), periosteal diameter (PD), endosteal diameter (ED), cortical thickness (CT), and cross-sectional moment of inertia (CSMI). When plotting the measured traits versus age, the curves increased with higher ages until statistically significant break points were reached, for all traits at age 17 in girls and age 19 in boys. After the break points, PD and ED increased with higher ages but, as ED increased more than PD, BMD and CT decreased significantly with higher ages. The decline in BMD was counteracted by the increase in bone size so that there was only a nonstatistically significant decrease in bone strength, estimated as Z and CSMI, from break point to age 90. The partial preservation of bone strength was more obvious in men than in women as the decline in BMD was higher in women than in men, while the expansion in PD was larger in men than in women. The sex difference in the normative FN bone strength data seems to be related to sex discrepancies in the development of both bone mass and geometrical parameters during both growth and adulthood.
  •  
3.
  • Alwis, Gayani, et al. (författare)
  • Normative Calcaneal Quantitative Ultrasound Data as an Estimation of Skeletal Development in Swedish Children and Adolescents.
  • 2010
  • Ingår i: Calcified Tissue International. - : Springer Science and Business Media LLC. - 1432-0827 .- 0171-967X. ; 87, s. 493-506
  • Tidskriftsartikel (refereegranskat)abstract
    • We present age- and gender-specific normative bone status data evaluated by quantitative ultrasound (QUS) in the calcaneus with the Lunar Achilles device and compare these estimates with bone mineral content (BMC) and bone mineral density (BMD) estimated by dual X-ray absorptiometry (DXA). Included were a sample of 518 population-based collected Swedish girls and 558 boys aged 6-19 years. QUS measurements included speed of sound (SOS), broadband ultrasound attenuation (BUA), and stiffness index (SI) in the calcaneus. DXA measurements included BMC and BMD in the femoral neck (FN), lumbar spine (L2-L4), and total body (TB). Height and weight were measured with standard equipment. Age, height, and weight were significantly associated with SOS, BUA, and SI. Compared to SOS, in both girls and boys there was a higher correlation between BUA and FN BMC (r = 0.71 and r = 0.73, respectively), FN BMD (r = 0.68 and r = 0.67, respectively), L2-L4 BMC (r = 0.70 and r = 0.64, respectively), L2-L4 BMD (r = 0.69 and r = 0.64, respectively), TB BMC (r = 0.76 and r = 0.75, respectively), and TB BMD (r = 0.74 and r = 0.74, respectively). The correlations between SOS and FN BMC (r = 0.38 and r = 0.52, respectively), FN BMD (r = 0.41 and r = 0.52, respectively), L2-L4 BMC (r = 0.31 and r = 0.40, respectively), L2-L4 BMD (r = 0.32 and r = 0.41, respectively), TB BMC (r = 0.42 and r = 0.49, respectively), and TB BMD (r = 0.48 and r = 0.54, respectively) were lower, although still significant (all P < 0.001). BUA seems to be the QUS parameter that best resembles the changes in BMC during growth.
  •  
4.
  • Buttazzoni, Christian, et al. (författare)
  • A Pediatric Bone Mass Scan Has Poor Ability to Predict Adult Bone Mass: A 28-Year Prospective Study in 214 Children.
  • 2014
  • Ingår i: Calcified Tissue International. - : Springer Science and Business Media LLC. - 1432-0827 .- 0171-967X. ; 94:2, s. 232-239
  • Tidskriftsartikel (refereegranskat)abstract
    • As the correlation of bone mass from childhood to adulthood is unclear, we conducted a long-term prospective observational study to determine if a pediatric bone mass scan could predict adult bone mass. We measured cortical bone mineral content (BMC [g]), bone mineral density (BMD [g/cm(2)]), and bone width (cm) in the distal forearm by single photon absorptiometry in 120 boys and 94 girls with a mean age of 10 years (range 3-17) and mean 28 years (range 25-29) later. We calculated individual and age-specific bone mass Z scores, using the control cohort included at baseline as reference, and evaluated correlations between the two measurements with Pearson's correlation coefficient. Individual Z scores were also stratified in quartiles to register movements between quartiles from growth to adulthood. BMD Z scores in childhood and adulthood correlated in both boys (r = 0.35, p < 0.0001) and girls (r = 0.50, p < 0.0001) and in both children ≥10 years at baseline (boys r = 0.43 and girls r = 0.58, both p < 0.0001) and children <10 years at baseline (boys r = 0.26 and girls r = 0.40, both p < 0.05). Of the children in the lowest quartile of BMD, 58 % had left the lowest quartile in adulthood. A pediatric bone scan with a value in the lowest quartile had a sensitivity of 48 % (95 % confidence interval [CI] 27-69 %) and a specificity of 76 % (95 % CI 66-84 %) to identify individuals who would remain in the lowest quartile also in adulthood. Childhood forearm BMD explained 12 % of the variance in adult BMD in men and 25 % in women. A pediatric distal forearm BMD scan has poor ability to predict adult bone mass.
  •  
5.
  • Buttazzoni, Christian, et al. (författare)
  • A Pediatric Bone Mass Scan has Poor Ability to Predict Peak Bone Mass: An 11-Year Prospective Study in 121 Children.
  • 2015
  • Ingår i: Calcified Tissue International. - : Springer Science and Business Media LLC. - 1432-0827 .- 0171-967X. ; 96:5, s. 379-388
  • Tidskriftsartikel (refereegranskat)abstract
    • This 11-year prospective longitudinal study examined how a pre-pubertal pediatric bone mass scan predicts peak bone mass. We measured bone mineral content (BMC; g), bone mineral density (BMD; g/cm(2)), and bone area (cm(2)) in femoral neck, total body and lumbar spine by dual-energy X-ray absorptiometry in a population-based cohort including 65 boys and 56 girls. At baseline all participants were pre-pubertal with a mean age of 8 years (range 6-9), they were re-measured at a mean 11 years (range 10-12) later. The participants were then mean 19 years (range 18-19), an age range that corresponds to peak bone mass in femoral neck in our population. We calculated individual BMC, BMD, and bone size Z scores, using all participants at each measurement as reference and evaluated correlations between the two measurements. Individual Z scores were also stratified in quartiles to register movements between quartiles from pre-pubertal age to peak bone mass. The correlation coefficients (r) between pre-pubertal and young adulthood measurements for femoral neck BMC, BMD, and bone area varied between 0.37 and 0.65. The reached BMC value at age 8 years explained 42 % of the variance in the BMC peak value; the corresponding values for BMD were 31 % and bone area 14 %. Among the participants with femoral neck BMD in the lowest childhood quartile, 52 % had left this quartile at peak bone mass. A pediatric bone scan with a femoral neck BMD value in the lowest quartile had a sensitivity of 47 % [95 % confidence interval (CI) 28, 66] and a specificity of 82 % (95 % CI 72, 89) to identify individuals who would remain in the lowest quartile at peak bone mass. The pre-pubertal femoral neck BMD explained only 31 % of the variance in femoral neck peak bone mass. A pre-pubertal BMD scan in a population-based sample has poor ability to predict individuals who are at risk of low peak bone mass.
  •  
6.
  • Buttazzoni, Christian, et al. (författare)
  • Preterm Children Born Small for Gestational Age are at Risk for Low Adult Bone Mass.
  • 2016
  • Ingår i: Calcified Tissue International. - : Springer Science and Business Media LLC. - 1432-0827 .- 0171-967X. ; 98:2, s. 105-113
  • Tidskriftsartikel (refereegranskat)abstract
    • Cross-sectional studies suggest that premature birth and low birth weight may both be associated with low peak bone mass. We followed bone traits in preterm individuals and controls for 27 years and examined the effects of birth weight relative to gestational age [stratified as small for gestational age (SGA) or appropriate for gestational (AGA)] on adult bone mineral density (BMD). We measured distal forearm BMC (g/cm) and BMD (g/cm(2)) with single-photon absorptiometry (SPA) in 46 preterm children (31 AGA and 15 SGA) at mean age 10.1 years (range 4-16) and in 84 healthy age-matched children. The measurements were repeated 27 years later with the same SPA apparatus but then also with dual energy absorptiometry and peripheral computed tomography (pQCT). Preterm individuals were shorter (p = 0.03) in adulthood than controls. Preterm AGA individuals had similar BMC and BMD height-adjusted Z-scores in adulthood compared to controls. Preterm SGA individuals had lower distal forearm BMC and BMD height-adjusted Z-scores in adulthood than both controls and preterm AGA individuals. Preterm SGA individuals had lower gain from childhood to adulthood in distal forearm BMC height-adjusted Z-scores than controls (p = 0.03). The deficits in preterm SGA individuals in adulthood were also captured by DEXA in height-adjusted femoral neck (FN) BMC Z-score and height-adjusted FN BMD Z-score and by pQCT in tibial cross-sectional area (CSA) Z-score and stress strain index (SSI) Z-score, where all measurements were lower than controls (all p values <0.05). Preterm SGA individuals are at increased risk of reaching low adult bone mass, at least partly due to a deficit in the accrual of bone mineral during growth. In our cohort, we were unable to find a similar risk in preterm AGA individuals.
  •  
7.
  • Detter, Fredrik, et al. (författare)
  • A 5-Year Exercise Program in Pre- and Peripubertal Children Improves Bone Mass and Bone Size Without Affecting Fracture Risk.
  • 2013
  • Ingår i: Calcified Tissue International. - : Springer Science and Business Media LLC. - 1432-0827 .- 0171-967X. ; 92:4, s. 385-393
  • Tidskriftsartikel (refereegranskat)abstract
    • We studied the effect in children of an exercise intervention program on fracture rates and skeletal traits. Fractures were registered for 5 years in a population-based prospective controlled exercise intervention study that included children aged 6-9 years at study start, 446 boys and 362 girls in the intervention group and 807 boys and 780 girls in the control group. Intervention subjects received 40 min/school day of physical education and controls, 60 min/week. In 73 boys and 48 girls in the intervention group and 52 boys and 48 girls in the control group, bone mineral density (BMD, g/cm(2)) and bone area (mm(2)) were followed annually by dual-energy X-ray absorptiometry, after which annual changes were calculated. At follow-up we also assessed trabecular and cortical volumetric BMD (g/cm(3)) and bone structure by peripheral computed tomography in the tibia and radius. There were 20.0 fractures/1,000 person-years in the intervention group and 18.5 fractures/1,000 person-years in the control group, resulting in a rate ratio of 1.08 (0.79-1.47) (mean and 95 % CI). The gain in spine BMD was higher in both girls (difference 0.01 g/cm(2), 0.005-0.019) and boys (difference 0.01 g/cm(2), 0.001-0.008) in the intervention group. Intervention girls also had higher gain in femoral neck area (difference 0.04 mm(2), 0.005-0.083) and at follow-up larger tibial bone mineral content (difference 0.18 g, 0.015-0.35), larger tibial cortical area (difference 17 mm(2), 2.4-31.3), and larger radial cross-sectional area (difference 11.0 mm(2), 0.63-21.40). As increased exercise improves bone mass and in girls bone size without affecting fracture risk, society ought to encourage exercise during growth.
  •  
8.
  • Fritz, Jesper, et al. (författare)
  • Influence of a School-based Physical Activity Intervention on Cortical Bone Mass Distribution : A 7-year Intervention Study
  • 2016
  • Ingår i: Calcified Tissue International. - : Springer Science and Business Media LLC. - 0171-967X .- 1432-0827. ; 99:5, s. 443-453
  • Tidskriftsartikel (refereegranskat)abstract
    • Cortical bone mass and density varies across a bones length and cross section, and may be influenced by physical activity. This study evaluated the long-term effects of a pediatric school-based physical activity intervention on tibial cortical bone mass distribution. A total of 170 children (72 girls and 98 boys) from one school were provided with 200 min of physical education per week. Three other schools (44 girls and 47 boys) continued with the standard 60 min per week. Tibial total and cortical area, cortical density, polar stress–strain index (SSI), and the mass and density distribution around the center of mass (polar distribution, mg) and through the bones cortex (radial distribution subdivided into endo-, mid-, and pericortical volumetric BMD: mg/cm3) at three sites (14, 38, and 66 %) were assessed using peripheral quantitative computed tomography after 7 years. Girls in the intervention group had 2.5 % greater cortical thickness and 6.9 % greater SSI at the 66 % tibia, which was accompanied by significantly greater pericortical volumetric BMD compared to controls (all P <0.05). Region-specific differences in cortical mass were also detected in the anterior, medial, and lateral sectors at the 38 and 66 % tibial sites. There were no group differences at the 14 % tibia site in girls, and no group differences in any of the bone parameters in boys. Additional school-based physical education over seven years was associated with greater tibial structure, strength, and region-specific adaptations in cortical bone mass and density distribution in girls, but not in boys.
  •  
9.
  • Hasselstrom, H. A., et al. (författare)
  • A 3-year Physical Activity Intervention Program Increases the Gain in Bone Mineral and Bone Width in Prepubertal Girls but not Boys: The Prospective Copenhagen School Child Interventions Study (CoSCIS)
  • 2008
  • Ingår i: Calcified Tissue International. - : Springer Science and Business Media LLC. - 1432-0827 .- 0171-967X. ; 83:4, s. 243-250
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to evaluate the effect of increasing the amount of time spent in physical education classes on bone mineral accrual and gain in bone size in prepubertal Danish children. A total of 135 boys and 108 girls, aged 6-8 years, were included in a school-based curriculum intervention program where the usual time spent in physical education classes was doubled to four classes (180 min) per week. The control group comprised age-matched children (62 boys and 76 girls) recruited from a separate community who completed the usual Danish school curriculum of physical activity (90 min/week). Dual-energy X-ray absorptiometry was used to evaluate bone mineral content (BMC; g), bone mineral density (g/cm(2)), and bone width at the calcaneus and distal forearm before and after 3 years of intervention. Anthropometrics and Tanner stages were evaluated on the same occasions. General physical activity was measured with an accelerometer worn for 4 days. In girls, the intervention group had a 12.5% increase (P = 0.04) in distal forearm BMC and a 13.2% increase (P = 0.005) in distal forearm scanned area compared with girls in the control group. No differences were found between the intervention and control groups in boys. Increasing the frequency of physical education classes for prepubertal children is associated with a higher accrual of bone mineral and higher gain in bone size after 3 years in girls but not in boys.
  •  
10.
  • Hasselstrom, H., et al. (författare)
  • Peripheral bone mineral density and different intensities of physical activity in children 6-8 years old: The Copenhagen School Child Intervention Study
  • 2007
  • Ingår i: Calcified Tissue International. - : Springer Science and Business Media LLC. - 1432-0827 .- 0171-967X. ; 80:1, s. 31-38
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aimed to evaluate the association between objectively measured habitual physical activity and calcaneal and forearm bone mineral density (BMD, g/cm(2)), one mechanically more loaded and one less loaded skeletal region, in children aged 6-8 years. BMD was measured in 297 boys and 265 girls by peripheral dual-energy X-ray absorptiometry in the forearm and calcaneus. An accelerometer registered the level of physical activity during 4 days (2 weekdays and the weekend). Weight, height, and skinfold thickness were measured. In order to establish thresholds (count center dot min(-1)) for bone-stimulating physical activity, we evaluated different definitions of vigorous physical activity. The boys had 3.2% higher distal forearm bone mineral content (BMC, P < 0.001) and 4.5% higher distal forearm BMD (P < 0.001) than the girls. They also carried out 9.7% more daily physical activity and spent 14.6-19.0% more time in vigorous physical activity (all P < 0.05) compared to the girls. In contrast, the girls had 3.8% higher calcaneal BMC (P < 0.01) and 2.5% higher calcaneal BMD (P < 0.05) than the boys. Both calcaneal and forearm BMD were significantly related to total time of daily physical activity as well as with intense physical activity above all the chosen cut-off points (all P < 0.05). The beta value for mean count center dot min(-1) physical activity was significantly lower than that for all the chosen cut-off points of vigorous activity both for calcaneal and distal forearm BMD. This study suggests that both habitual daily physical activity and amount of vigorous physical activity in children aged 6-8 years are associated with appendicular BMD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy