SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "L773:0196 9781 ;mspu:(researchreview)"

Search: L773:0196 9781 > Research review

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ahrén, Bo (author)
  • Glucagon-early breakthroughs and recent discoveries.
  • 2015
  • In: Peptides. - : Elsevier BV. - 1873-5169 .- 0196-9781. ; 67, s. 74-81
  • Research review (peer-reviewed)abstract
    • Glucagon was discovered in 1922 as a hyperglycemic factor in the pancreas. During its early history up to 1970, glucagon was shown to increase circulating glucose through stimulating glycogenolysis in the liver. It was also shown to be a constituent of islet non-ß cells and to signal through G protein coupled receptors and cyclic AMP. Furthermore, its chemical characteristics, including amino acid sequence, and its processing from the preproglucagon gene had been established. During the modern research during the last 40 years, glucagon has been established as a key hormone in the regulation of glucose homeostasis, including a key role for the glucose counterregulation to hypoglycemia and for development of type 2 diabetes, and today glucagon is a potential target for treatment of the disease. Glucagon has also been shown to be a key factor beyond glucose control and involved in many processes. For the coming, future research, studies will be focused on α-cell biology beyond glucagon, hyperglucagonemia in other conditions than diabetes, its involvement in the regulation of body weight and energy expenditure and the potential of glucagon as a target for other diseases than type 2 diabetes, such as type 1 diabetes and obesity. This review summarizes the more than 90 years history of this important hormone as well as discusses potential future research regarding glucagon.
  •  
2.
  • Ahrén, Bo, et al. (author)
  • Islet adaptation in GIP receptor knockout mice
  • 2019
  • In: Peptides. - : Elsevier BV. - 0196-9781.
  • Research review (peer-reviewed)abstract
    • Glucose-dependent insulinotropic polypeptide (GIP) receptor knockout (KO) mice are tools for studying GIP physiology. Previous results have demonstrated that these mice have impaired insulin response to oral glucose. In this study, we examined the insulin response to intravenous glucose by measuring glucose, insulin and C-peptide after intravenous glucose (0.35 g/kg) in 5-h fasted female GIP receptor KO mice and their wild-type (WT) littermates. The 1 min insulin and C-peptide responses to intravenous glucose were significantly enhanced in GIP receptor KO mice (n = 26) compared to WT mice (n = 30) as was beta cell function (area under the 50 min C-peptide curve divided by area under the 50 min curve for glucose) (P = 0.001). Beta cell function after intravenous glucose was also enhanced in GIP receptor KO mice in the presence of the glucagon-like peptide-1 receptor antagonist exendin 9 (30 nmol/kg; P = 0.007), the muscarinic antagonist atropine (5 mg/kg; P = 0.007) and the combination of the alpha-adrenoceptor antagonist yohimbine (1.4 mg/kg) and the beta-adrenoceptor antagonist propranolol (2.5 mg/kg; P = 0.042). Analysis of the regression between fasting glucose (6.8 ± 0.1 mmol/l in GIP receptor KO mice and 7.5 ± 0.2 mmol/l in WT mice, P = 0.003) and the 1 min C-peptide response to intravenous glucose showed a negative linear regression between these variables in both WT (n = 60; r = −0.425, P = 0.001) and GIP receptor KO mice (n = 56; r = −0.474, P < 0.001). We conclude that there is a beta cell adaptation in GIP receptor KO mice resulting in enhanced insulin secretion after intravenous glucose to which slight long-term reduction in circulating glucose in these mice may contribute.
  •  
3.
  • Ekblad, Eva (author)
  • CART in the enteric nervous system.
  • 2006
  • In: Peptides. - : Elsevier BV. - 1873-5169 .- 0196-9781. ; 27:8, s. 2024-2030
  • Research review (peer-reviewed)abstract
    • The expression, distribution, origin, projections, chemical coding and functions of cocaine and amphetamine-regulated transcript (CART) in the gastro-intestinal tract are reviewed. CART is extensively expressed in the enteric nervous system. Except from being a possible modulator of NO induced intestinal relaxation CART does not seem to play any pivotal role in intestinal motility. Accumulating evidence suggest CART to be neuroprotective, involved in survival and maintenance of enteric neurons. CART expression increases in atrophic intestine thus suggesting a role of CART in intestinal adaptation. In rat antral mucosa CART is expressed in gastrin cells indicating a hormonal role of gastric CART.
  •  
4.
  • Nilsson, Bengt Olof (author)
  • What can we learn about functional importance of human antimicrobial peptide LL-37 in the oral environment from severe congenital neutropenia (Kostmann disease)?
  • 2020
  • In: Peptides. - : Elsevier BV. - 0196-9781. ; 128
  • Research review (peer-reviewed)abstract
    • The human antimicrobial peptide LL-37 is produced by neutrophils and epithelial cells, and the peptide can be detected in plasma as well as saliva. LL-37 is active against both gram-positive and gram-negative bacteria including oral pathogens such as Porphyromonas gingivalis and Streptococcus mutans. Besides its antimicrobial properties, LL-37 modulates the innate immune system, and furthermore, it also affects host cell viability. Although, both structural and functional properties of LL-37 have been extensively investigated, its physiological/pathophysiological importance in-vivo is not completely understood. In this review, Kostmann disease (morbus Kostmann) is highlighted since it may represent a LL-37 knockdown model which can provide new important information and insights about the functional role of LL-37 in the human in-vivo setting. Patients with Kostmann disease suffer from neutropenia, and although they are treated with recombinant granulocyte colony-stimulating factor (G-CSF) to normalize their levels of neutrophils, they lack or have very low levels of LL-37 in plasma, saliva and neutrophils. Interestingly, these patients suffer from severe periodontal disease, linking LL-37-deficiency to oral infections. Thus, LL-37 seems to play an important pathophysiological role in the oral environment antagonizing oral pathogens and thereby prevents oral infections.
  •  
5.
  • Nässel, Dick R., et al. (author)
  • A comparative review of short and long neuropeptide F signaling in invertebrates : Any similarities to vertebrate neuropeptide Y signaling?
  • 2011
  • In: Peptides. - : Elsevier BV. - 0196-9781 .- 1873-5169. ; 32:6, s. 1335-1355
  • Research review (peer-reviewed)abstract
    • Neuropeptides referred to as neuropeptide F (NPF) and short neuropeptide F (sNPF) have been identified in numerous invertebrate species. Sequence information has expanded tremendously due to recent genome sequencing and EST projects. Analysis of sequences of the peptides and prepropeptides strongly suggest that NPFs and sNPFs are not closely related. However, the NPFs are likely to be ancestrally related to the vertebrate family of neuropeptide Y (NPY) peptides. Peptide diversification may have been accomplished by different mechanisms in NPFs and sNPFs; in the former by gene duplications followed by diversification and in the sNPFs by internal duplications resulting in paracopies of peptides. We discuss the distribution and functions of NPFs and their receptors in several model invertebrates. Signaling with sNPF, however, has been investigated mainly in insects, especially in Drosophila. Both in invertebrates and in mammals NPF/NPY play roles in feeding, metabolism, reproduction and stress responses. Several other NPF functions have been studied in Drosophila that may be shared with mammals. In Drosophila sNPFs are widely distributed in numerous neurons of the CNS and some gut endocrines and their functions may be truly pleiotropic. Peptide distribution and experiments suggest roles of sNPF in feeding and growth, stress responses, modulation of locomotion and olfactory inputs, hormone release, as well as learning and memory. Available data indicate that NPF and sNPF signaling systems are distinct and not likely to play redundant roles.
  •  
6.
  • Schéle, Erik, 1980, et al. (author)
  • Regulation of body fat mass by the gut microbiota: Possible mediation by the brain.
  • 2016
  • In: Peptides. - : Elsevier BV. - 1873-5169 .- 0196-9781. ; 77, s. 54-59
  • Research review (peer-reviewed)abstract
    • New insight suggests gut microbiota as a component in energy balance. However, the underlying mechanisms by which gut microbiota can impact metabolic regulation is unclear. A recent study from our lab shows, for the first time, a link between gut microbiota and energy balance circuitries in the hypothalamus and brainstem. In this article we will review this study further.
  •  
7.
  •  
8.
  • Wierup, Nils, et al. (author)
  • The role of CART in islet biology
  • 2022
  • In: Peptides. - : Elsevier BV. - 1873-5169 .- 0196-9781. ; 149
  • Research review (peer-reviewed)abstract
    • Cocaine- and amphetamine-regulated transcript (CART) is mostly known for its appetite regulating effects in the central nervous system. However, CART is also highly expressed in the peripheral nervous system as well as in certain endocrine cells. Our group has dedicated more than 20 years to understand the role of CART in the pancreatic islets and in this review we summarize what is known to date about CART expression and function in the islets. CART is expressed in both islet cells and nerve fibers innervating the islets. Large species differences are at hand and CART expression is highly dynamic and increased during development, as well as in Type 2 Diabetes and certain endocrine tumors. In the human islets CART is expressed in alpha cells and beta cells and the expression is increased in T2D patients. CART increases insulin secretion, reduces glucagon secretion, and protects against beta cell death by reducing apoptosis and increasing proliferation. It is still not fully understood how CART mediates its effects or which receptors that are involved. Nevertheless, CART is endowed with several properties that are beneficial in a T2D perspective. Many of the described effects of CART resemble those of GLP-1, and interestingly CART has been found to potentiate some of the effects of GLP-1, paving the way for CART-based treatments in combination with GLP-1-based drugs.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view