SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0363 6119 ;lar1:(ki)"

Sökning: L773:0363 6119 > Karolinska Institutet

  • Resultat 1-10 av 45
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Addinsall, AB, et al. (författare)
  • Impaired exercise performance is independent of inflammation and cellular stress following genetic reduction or deletion of selenoprotein S
  • 2020
  • Ingår i: American journal of physiology. Regulatory, integrative and comparative physiology. - : American Physiological Society. - 1522-1490 .- 0363-6119. ; 318:5, s. R981-R996
  • Tidskriftsartikel (refereegranskat)abstract
    • Selenoprotein S (Seps1) can be protective against oxidative, endoplasmic reticulum (ER), and inflammatory stress. Seps1 global knockout mice are less active, possess compromised fast muscle ex vivo strength, and, depending on context, heightened inflammation. Oxidative, ER, and inflammatory stress modulates contractile function; hence, our aim was to investigate the effects of Seps1 gene dose on exercise performance. Seps1−/− knockout, Seps1−/+ heterozygous, and wild-type mice were randomized to 3 days of incremental, high-intensity treadmill running or a sedentary control group. On day 4, the in situ contractile function of fast tibialis anterior (TA) muscles was determined. Seps1 reduction or deletion compromised exercise capacity, decreasing distance run. TA strength was also reduced. In sedentary Seps1−/− knockout mice, TA fatigability was greater than wild-type mice, and this was ameliorated with exercise. Whereas, in Seps1+/− heterozygous mice, exercise compromised TA endurance. These impairments in exercise capacity and TA contractile function were not associated with increased inflammation or a dysregulated redox state. Seps1 is highly expressed in muscle fibers and blood vessels. Interestingly, Nos1 and Vegfa mRNA transcripts were decreased in TA muscles from Seps1−/− knockout and Seps1−/+ heterozygous mice. Impaired exercise performance with Seps1 reduction or deletion cannot be attributed to heightened cellular stress, but it may potentially be mediated, in part, by the effects of Seps1 on the microvasculature.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Carlström, Mattias, et al. (författare)
  • Role of NOX2 in the regulation of afferent arteriole responsiveness
  • 2009
  • Ingår i: American Journal of Physiology. Regulatory Integrative and Comparative Physiology. - : American Physiological Society. - 0363-6119 .- 1522-1490. ; 296:1, s. R72-R79
  • Tidskriftsartikel (refereegranskat)abstract
    • NADPH oxidases (NOX) are the major source of reactive oxygen species (ROS) in the vasculature and contribute to the control of renal perfusion. The role of NOX2 in the regulation of blood pressure and afferent arteriole responsiveness was investigated in NOX2(-/-) and wild-type mice. Arteriole constrictions to ANG II (10(-14)-10(-6) mol/l) were weaker in NOX2(-/-) compared with wild types. N(omega)-nitro-l-arginine methyl ester (l-NAME; 10(-4) mol/l) treatment reduced basal diameters significantly more in NOX2(-/-) (-18%) than in wild types (-6%) and augmented ANG II responses. Adenosine (10(-11)-10(-4) mol/l) constricted arterioles of wild types but not of NOX2(-/-). However, simultaneous inhibition of adenosine type-2 receptors induced vasoconstriction, which was stronger in NOX2(-/-). Adenosine (10(-8) mol/l) enhanced the ANG II response in wild type, but not in NOX2(-/-). This sensitizing effect by adenosine was abolished by apocynin. Chronic ANG II pretreatment (14 days) did not change the ANG II responses in NOX2(-/-), but strengthened the response in wild types. ANG II pretreatment augmented the l-NAME response in NOX2(-/-) (-33%), but not in wild types. Simultaneous application of l-NAME and ANG II caused a stronger constriction in the NOX2(-/-) (-64%) than in wild types (-46%). Basal blood pressures were similar in both genotypes, however, chronic ANG II infusion elevated blood pressure to a greater extent in wild-type (15 +/- 1%) than in NOX2(-/-) (8 +/- 1%) mice. In conclusion, NOX2 plays an important role in the control of afferent arteriole tone and is involved in the contractile responses to ANG II and/or adenosine. NOX2 can be activated by elevated ANG II and may play an important role in ANG II-induced hypertension. NOX2-derived ROS scavenges nitric oxide, causing subsequent nitric oxide-deficiency.
  •  
6.
  • Carlström, Mattias, et al. (författare)
  • SOD1-Deficiency Causes Salt-Sensitivity and Aggravates Hypertension in Hydronephrosis
  • 2009
  • Ingår i: American Journal of Physiology. Regulatory Integrative and Comparative Physiology. - : American Physiological Society. - 0363-6119 .- 1522-1490. ; 297:1, s. R82-R92
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Hydronephrosis causes renal dysfunction and salt-sensitive hypertension, which is associated with NO-deficiency and abnormal tubuloglomerular feedback (TGF) response. We investigated the role of oxidative stress for salt-sensitivity and for hypertension in hydronephrosis. Methods: Hydronephrosis was induced in SOD1-transgenic (SOD1-tg), SOD1-deficient (SOD1-ko) and wild-type mice and in rats. In mice, telemetric measurements were performed during normal (0.7% NaCl) and high sodium (4% NaCl) diets and with chronic Tempol supplementation. 8-iso-prostaglandin-F2alpha (F2-IsoPs) and protein excretion profiles and histology were investigated. The acute effects of Tempol on blood pressure and TGF were studied in rats. Results: In hydronephrosis, wild-type mice developed salt-sensitive hypertension (114+/-1 to 120+/-2 mmHg) which was augmented in SOD1-ko (125+/-3 to 135+/-4 mmHg), but abolished in SOD1-tg (109+/-3 to 108+/-3 mmHg). SOD1-ko controls displayed salt-sensitive blood pressure (108+/-1 to 115+/-2 mmHg), which was not found in wild-types or SOD1-tg. Chronic Tempol treatment reduced blood pressure in SOD1-ko controls (-7 mmHg) and in hydronephrotic wild-types (-8 mmHg) and SOD1-ko mice (-16 mmHg), but had no effect on blood pressure in wild-type or SOD1-tg controls. SOD1-ko controls and hydronephrotic wild-type and SOD1-ko mice exhibited increased fluid excretion associated with increased F2-IsoPs and protein excretion. The renal histopathological changes found in hydronephrotic wild-types were augmented in SOD1-ko and diminished in SOD-tg mice. Tempol attenuated blood pressure and normalized TGF response in hydronephrosis (DeltaPSF: 15.2+/-1.2 to 9.1+/-0.6 mmHg, TP: 14.3+/-0.8 to 19.7+/-1.4 nl/min). Conclusion: Oxidative stress due to SOD1-deficiency causes salt-sensitivity and plays a pivotal role for the development of hypertension in hydronephrosis. Increased superoxide formation may enhance TGF response and thereby contribute to hypertension.
  •  
7.
  • Douglas, G, et al. (författare)
  • Functional characterization and sex differences in small mesenteric arteries of the estrogen receptor-beta knockout mouse
  • 2008
  • Ingår i: American journal of physiology. Regulatory, integrative and comparative physiology. - : American Physiological Society. - 0363-6119 .- 1522-1490. ; 294:1, s. R112-R120
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of the estrogen receptor (ER) subtypes in the modulation of vascular function is poorly understood. The aim of this study was to characterize ex vivo the functional properties of small arteries and their response to estrogens in the mesenteric circulation of female and male ER-β knockout mice (β-ERKO) and their wild-type (WT) littermates. Responses to changes in intraluminal flow and pressure were obtained before and after incubation with 17β-estradiol or ER-α agonist propyl-pyrazole-triol (3 h; 10 nM). Cumulative concentration-response curves to acetylcholine, norepinephrine, and passive distensibility were compared with respect to sex and genotype. The collagen and elastin content within the vascular wall and ER expression were also determined. Endothelial morphology was visualized by scanning electron microscopy. 17β-Estradiol and propyl-pyrazole-triol-treated arteries from female β-ERKO and WT mice showed enhanced flow-mediated dilation, but this was not evident in males. Distensibility was decreased in arteries from β-ERKO females. Sex differences in myogenic tone were observed in 17β-estradiol-treated arteries, but were similar between β-ERKO and WT mice. Acetylcholine- and norepinephrine-induced responses were similar between groups and sexes. ER-α was similarly expressed in the endothelium and media of arteries from all groups studied, as well as ER-β in WT animals. Endothelial morphology was similar in arteries from animals of both sexes and genotype; however, arterial elastin content was decreased, and collagen content was increased in β-ERKO male compared with WT male and with β-ERKO female. We suggest that ERs play a sex-specific role in estrogen-mediated flow responses and distensibility, and that deletion of ER-β affects artery structure but only in male animals. Further studies in β-ERKO mice with established hypertension and in α-ERKO mice are warranted.
  •  
8.
  • Fliegner, D, et al. (författare)
  • Female sex and estrogen receptor-beta attenuate cardiac remodeling and apoptosis in pressure overload
  • 2010
  • Ingår i: American journal of physiology. Regulatory, integrative and comparative physiology. - : American Physiological Society. - 1522-1490 .- 0363-6119. ; 298:6, s. R1597-R1606
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated sex differences and the role of estrogen receptor-β (ERβ) on myocardial hypertrophy in a mouse model of pressure overload. We performed transverse aortic constriction (TAC) or sham surgery in male and female wild-type (WT) and ERβ knockout (ERβ−/−) mice. All mice were characterized by echocardiography and hemodynamic measurements and were killed 9 wk after surgery. Left ventricular (LV) samples were analyzed by microarray profiling, real-time RT-PCR, and histology. After 9 wk, WT males showed more hypertrophy and heart failure signs than WT females. Notably, WT females developed a concentric form of hypertrophy, while males developed eccentric hypertrophy. ERβ deletion augmented the TAC-induced increase in cardiomyocyte diameter in both sexes. Gene expression profiling revealed that WT male hearts had a stronger induction of matrix-related genes and a stronger repression of mitochondrial genes than WT female hearts. ERβ−/− mice exhibited a different transcriptional response. ERβ−/−/TAC mice of both sexes exhibited induction of proapoptotic genes with a stronger expression in ERβ−/− males. Cardiac fibrosis was more pronounced in male WT/TAC than in female mice. This difference was abolished in ERβ−/− mice. The number of apoptotic nuclei was increased in both sexes of ERβ−/−/TAC mice, most prominent in males. Female sex offers protection against ventricular chamber dilation in the TAC model. Both female sex and ERβ attenuate the development of fibrosis and apoptosis, thus slowing the progression to heart failure.
  •  
9.
  • Frithiof, R, et al. (författare)
  • Activation of central opioid receptors determines the timing of hypotension during acute hemorrhage-induced hypovolemia in conscious sheep
  • 2006
  • Ingår i: American journal of physiology. Regulatory, integrative and comparative physiology. - : American Physiological Society. - 0363-6119 .- 1522-1490. ; 291:4, s. R987-R996
  • Tidskriftsartikel (refereegranskat)abstract
    • After an initial compensatory phase, hemorrhage reduces blood pressure due to a widespread reduction of sympathetic nerve activity (decompensatory phase). Here, we investigate the influence of intracerebroventricular naloxone (opioid-receptor antagonist) and morphine (opioid-receptor agonist) on the two phases of hemorrhage, central and peripheral hemodynamics, and release of vasopressin and renin in chronically instrumented conscious sheep. Adult ewes were bled (0.7 ml·kg−1·min−1) from a jugular vein until mean arterial blood pressure (MAP) reached 50 mmHg. Starting 30 min before and continuing until 60 min after hemorrhage, either artificial cerebrospinal fluid (aCSF), naloxone, or morphine was infused intracerebroventricularly. Naloxone (200 μg/min but not 20 or 2.0 μg/min) significantly increased the hemorrhage volume compared with aCSF (19.5 ± 3.2 vs. 13.9 ± 1.1 ml/kg). Naloxone also increased heart rate and cardiac index. Morphine (2.0 μg/min) increased femoral blood flow and decreased hemorrhage volume needed to reduce MAP to 50 mmHg (8.9 ± 1.5 vs. 13.9 ± 1.1 ml/kg). The effects of morphine were abolished by naloxone at 20 μg/min. It is concluded that the commencement of the decompensatory phase of hemorrhage in conscious sheep involves endogenous activation of central opioid receptors. The effective dose of morphine most likely activated μ-opioid receptors, but they appear not to have been responsible for initiating decompensation as 1) naloxone only inhibited an endogenous mechanism at a dose much higher than the effective dose of morphine, and 2) the effects of morphine were blocked by a dose of naloxone, which, by itself, did not delay the decompensatory phase.
  •  
10.
  • Frithiof, R, et al. (författare)
  • Hypothalamic paraventricular nucleus mediates sodium-induced changes in cardiovascular and renal function in conscious sheep
  • 2009
  • Ingår i: American journal of physiology. Regulatory, integrative and comparative physiology. - : American Physiological Society. - 1522-1490 .- 0363-6119. ; 297:1, s. R185-R193
  • Tidskriftsartikel (refereegranskat)abstract
    • The contribution of the paraventricular nucleus of the hypothalamus (PVN) in mediating cardiovascular, renal, hormonal, and sympathetic nerve responses to increased cerebrospinal fluid (CSF) [Na+] was investigated in conscious sheep. Intracerebroventricular hypertonic NaCl (0.5 mol/l, 20 μl/min for 60 min) increased arterial blood pressure [AP; +13.4 (sd 2.0) mmHg, P < 0.001] and central venous pressure [CVP; +2.8 (sd 1.3) mmHg, P < 0.001], but did not significantly change heart rate or cardiac output ( n = 6). Elevated CSF [Na+] also lowered plasma ANG II levels [−3.3 (sd 1.6) pmol/l, P = 0.004] and increased creatinine clearance [+31.5 (sd 32.7) ml/min, P = 0.03] and renal sodium excretion [+9.2 (sd 9.2) mmol/h, P = 0.003]. Lidocaine injection (1 μl, 2%) into the PVN prior to the ICV infusion had no apparent effect per se, but it abolished the AP, CVP, creatinine clearance, and ANG II responses to hypertonic NaCl, as well as reducing the increase in renal sodium excretion ( n = 6). Subsequent studies were performed in conscious sheep with chronically implanted electrodes for measurement of renal sympathetic nerve activity (RSNA). The effects of ICV hypertonic NaCl on AP and RSNA were measured before and after PVN-injection of glycine (250 nmol in 500 nl artificial CSF). ICV NaCl increased AP and decreased RSNA ( P < 0.001). These effects were significantly reduced by glycine ( P = 0.02–0.001, n = 5). Saline injected into the PVN ( n = 5) or lidocaine injected outside the PVN ( n = 6) had no effect on the response to ICV hypertonic NaCl. These results indicate that the PVN is an important mediator of cerebrally induced homeostatic responses to elevated sodium concentration/hyperosmolality.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 45

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy