SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0363 6119 ;pers:(Pacini Giovanni)"

Sökning: L773:0363 6119 > Pacini Giovanni

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chan, Hui Min, et al. (författare)
  • Effects of increasing doses of glucagon-like peptide-1 on insulin-releasing phases during intravenous glucose administration in mice
  • 2011
  • Ingår i: American Journal of Physiology: Regulatory, Integrative and Comparative Physiology. - : American Physiological Society. - 0363-6119 .- 1522-1490. ; 300:5, s. 1126-1133
  • Tidskriftsartikel (refereegranskat)abstract
    • Chan HM, Jain R, Ahren B, Pacini G, D'Argenio DZ. Effects of increasing doses of glucagon-like peptide-1 on insulin-releasing phases during intravenous glucose administration in mice. Am J Physiol Regul Integr Comp Physiol 300: R1126-R1133, 2011. First published February 9, 2010; doi:10.1152/ajpregu.00687.2010.-The increase in insulin secretion caused by glucagon-like peptide-1 (GLP-1) and GLP-1 mimetics observed during an intravenous glucose test (IVGTT) has been reported in both normal and disease animal models, as well as in humans. In this study, a hierarchical population modeling approach is used, together with a previously reported model relating glucose to insulin appearance, to determine quantitative in vivo dose-response relationships between GLP-1 dose level and both first-and second-phase insulin release. Parameters of the insulin kinetic model were estimated from the complete set of glucose and insulin data collected in 219 anesthetized nonfasted NMR-imaged mice after intravenous injection of glucose (1 g/kg) alone or with GLP-1 (0.03-100 nmol/kg). The resulting dose-response curves indicate a difference in GLP-1 effect on the two release phases, as is also evident from the different ED50 parameter values (0.107 vs. 6.65 nmol/kg for phase 1 vs. phase 2 insulin release parameters). The first phase of insulin release is gradually augmented with increasing GLP-1 dose, reaching saturation at a dose of similar to 1 nmol/kg, while the second-phase release changes more abruptly at GLP-1 doses between 3 and 10 nmol/kg and shows a more pronounced 100-fold increase between control and the high GLP-1 dose of 100 nmol/kg Moreover, separate disposition indices calculated for phase 1 and 2 insulin release, show a different pattern of increase with increasing GLP-1 dose.
  •  
2.
  • Pacini, Giovanni, et al. (författare)
  • Reappraisal of the intravenous glucose tolerance index for a simple assessment of insulin sensitivity in mice
  • 2009
  • Ingår i: American Journal of Physiology: Regulatory, Integrative and Comparative Physiology. - : American Physiological Society. - 0363-6119 .- 1522-1490. ; 296:5, s. 1316-1324
  • Tidskriftsartikel (refereegranskat)abstract
    • Pacini G, Ahren M, Ahren B. Reappraisal of the intravenous glucose tolerance index for a simple assessment of insulin sensitivity in mice. Am J Physiol Regul Integr Comp Physiol 296: R1316-R1324, 2009. First published February 11, 2009; doi: 10.1152/ajpregu.90575.2008.- Mice are increasingly used in studies where measuring insulin sensitivity (IS) is a common procedure. The glucose clamp is labor intensive, cannot be used in large numbers of animals, cannot be repeated in the same mouse, and has been questioned as a valid tool for IS in mice; thus, the minimal model with 50-min intravenous glucose tolerance test (IVGTT) data was adapted for studies in mice. However, specific software and particular ability was needed. The aim of this study was to establish a simple procedure for evaluating IS during IVGTT in mice (CSI). IVGTTs (n = 520) were performed in NMRI and C57BL/6J mice (20-25g). After glucose injection (1 g/kg), seven samples were collected for 50 min for glucose and insulin measurements, analyzed with a minimal model that provided the validated reference IS (S-perpendicular to). By using the regression CS perpendicular to = alpha(1) + alpha(2) x K-G/AUC(D), where K-G is intravenous glucose tolerance index and AUC(D) is the dynamic area under the curve, IS was calculated in 134 control animals randomly selected (regression CSI vs. S-I: r = 0.66, P < 0.0001) and yielded alpha(1) = 1.93 and alpha(2) = 0.24. KG is the slope of log (glucose(5-20)) and AUCD is the mean dynamic area under insulin curve in the IVGTT. By keeping fixed alpha(1) and alpha(2), CSI was validated in 143 control mice (4.7 +/- 0.2 min . mu U- . ml(-1), virtually identical to S-I: 4.7 +/- 0.3, r = 0.89, P < 0.0001); and in 123 mice in different conditions: transgenic, addition of neuropeptides, incretins, and insulin (CSI: 6.0 +/- 0.4 vs. SI: 6.1 +/- 0.4, r = 0.94, P < 0.0001). In the other 120 animals, CSI revealed its ability to segregate different categories, as does S-I. This easily usable formula for calculating CSI overcomes many experimental obstacles and may be a simple alternative to more complex procedures when large numbers of mice or repeated experiments in the same animals are required.
  •  
3.
  • Tura, Andrea, et al. (författare)
  • Glucagon and insulin secretion, insulin clearance, and fasting glucose in GIP receptor and GLP-1 receptor knockout mice
  • 2019
  • Ingår i: American Journal of Physiology: Regulatory, Integrative and Comparative Physiology. - : American Physiological Society. - 0363-6119 .- 1522-1490. ; 316:1, s. 27-37
  • Tidskriftsartikel (refereegranskat)abstract
    • It is not known whether GIP receptor and GLP-1 receptor knockout (KO) mice have perturbations in glucagon secretion or insulin clearance, and studies on impact on fasting glycemia have previously been inconsistent in these mice. We therefore studied glucagon secretion after oral whey protein (60 mg) and intravenous arginine (6.25 mg), insulin clearance after intravenous glucose (0.35 g/kg) and fasting glucose, insulin, and glucagon levels after standardized 5-h fasting in female GIP receptor and GLP-1 receptor KO mice and their wild-type (WT) littermates. Compared with WT controls, GIP receptor KO mice had normal glucagon responses to oral protein and intravenous arginine, except for an enhanced 1-min response to arginine, whereas glucagon levels after oral protein and intravenous arginine were enhanced in GLP-1 receptor KO mice. Furthermore, the intravenous glucose test revealed normal insulin clearance in both GIP receptor and GLP-1 receptor KO mice, whereas β-cell glucose sensitivity was enhanced in GIP receptor KO mice and reduced in GLP-1 receptor KO mice. Finally, GIP receptor KO mice had reduced fasting glucose (6.7 ± 0.1, n = 56, vs. 7.4 ± 0.1 mmol/l, n = 59, P = 0.001), whereas GLP-1 receptor KO mice had increased fasting glucose (9.1 ± 0.2, n = 44, vs. 7.7 ± 0.1 mmol/l, n = 41, P < 0.001). We therefore suggest that GIP has a limited role for glucagon secretion in mice, whereas GLP-1 is of importance for glucagon regulation, that GIP and GLP-1 are of importance for the regulation of β-cell function beyond their role as incretin hormones, and that they are both of importance for fasting glucose.
  •  
4.
  • Tura, Andrea, et al. (författare)
  • Increased insulin clearance in mice with double deletion of glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide receptors
  • 2018
  • Ingår i: American Journal of Physiology - Regulatory Integrative and Comparative Physiology. - : American Physiological Society. - 0363-6119 .- 1522-1490. ; 314:5, s. 639-646
  • Tidskriftsartikel (refereegranskat)abstract
    • To establish whether incretin hormones affect insulin clearance, the aim of this study was to assess insulin clearance in mice with genetic deletion of receptors for both glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), so called double incretin receptor knockout mice (DIRKO). DIRKO (n = 31) and wild-type (WT) C57BL6J mice (n = 45) were intravenously injected with D-glucose (0.35 g/kg). Blood was sampled for 50 min and assayed for glucose, insulin, and C-peptide. Data were modeled to calculate insulin clearance; C-peptide kinetics was established after human C-peptide injection. Assessment of C-peptide kinetics revealed that C-peptide clearance was 1.66 ± 0.10 10–31/min. After intravenous glucose administration, insulin clearance during first phase insulin secretion was markedly higher in DIRKO than in WT mice (0.68 ± 0.06 10–3l/min in DIRKO mice vs. 0.54 ± 0.03 10–31/min in WT mice, P = 0.02). In contrast, there was no difference between the two groups in insulin clearance during second phase insulin secretion (P = 0.18). In conclusion, this study evaluated C-peptide kinetics in the mouse and exploited a mathematical model to estimate insulin clearance. Results showed that DIRKO mice have higher insulin clearance than WT mice, following intravenous injection of glucose. This suggests that incretin hormones reduce insulin clearance at physiological, nonstimulated levels.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy