SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0390 6078 OR L773:1592 8721 ;mspu:(researchreview)"

Sökning: L773:0390 6078 OR L773:1592 8721 > Forskningsöversikt

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Kristinsson, Sigurdur Y., et al. (författare)
  • Genetic and immune-related factors in the pathogenesis of lymphoproliferative and plasma cell malignancies
  • 2009
  • Ingår i: Haematologica. - : Ferrata Storti Foundation (Haematologica). - 1592-8721 .- 0390-6078. ; 94:11, s. 1581-1589
  • Forskningsöversikt (refereegranskat)abstract
    • There are data to support a role for genetic and immune-related factors in the pathogenesis of lymphomas and plasma cell diseases. In this paper, we review our published large population-based studies and other relevant studies in Hodgkin's and non-Hodgkin's lymphomas, multiple myeloma, and the precursor condition monoclonal gammopathy of undetermined significance. We discuss the overlap in risk factors between related malignancies and explore the underlying mechanisms. Based on these studies, we provide clinical implications and discuss the relevance of these data for patient counseling and clinical follow-up. Finally, we suggest future directions for new studies designed to increase our current knowledge and to define underlying biological mechanisms of our findings.
  •  
3.
  • Nurden, Paquita, et al. (författare)
  • Inherited platelet diseases with normal platelet count : phenotypes, genotypes and diagnostic strategy
  • 2021
  • Ingår i: Haematologica. - : Ferrata Storti Foundation. - 0390-6078 .- 1592-8721. ; 106:2, s. 337-350
  • Forskningsöversikt (refereegranskat)abstract
    • Inherited platelet disorders resulting from platelet function defects and a normal platelet count cause a moderate or severe bleeding diathesis. Since the description of Glanzmann thrombasthenia resulting from defects of ITGA2B and ITGB3, new inherited platelet disorders have been discovered, facilitated by the use of high throughput sequencing and genomic analyses. Defects of RASGRP2 and FERMT3 responsible for severe bleeding syndromes and integrin activation have illustrated the critical role of signaling molecules. Important are mutations of P2RY12 encoding the major ADP receptor causal for an inherited platelet disorder with inheritance characteristics that depend on the variant identified. Interestingly, variants of GP6 encoding the major subunit of the collagen receptor GPVI/FcR gamma associate only with mild bleeding. The numbers of genes involved in dense granule defects including Hermansky-Pudlak and Chediak Higashi syndromes continue to progress and are updated. The ANO6 gene encoding a Ca2+-activated ion channel required for phospholipid scrambling is responsible for the rare Scott syndrome and decreased procoagulant activity. A novel EPHB2 defect in a familial bleeding syndrome demonstrates a role for this tyrosine kinase receptor independent of the classical model of its interaction with ephrins. Such advances high light the large diversity of variants affecting platelet function but not their production, despite the difficulties in establishing a clear phenotype when few families are affected. They have provided insights into essential pathways of platelet function and have been at the origin of new and improved therapies for ischemic disease. Nevertheless, many patients remain without a diagnosis and requiring new strategies that are now discussed.
  •  
4.
  •  
5.
  • Rosenquist, Richard, et al. (författare)
  • Clinical impact of recurrently mutated genes on lymphoma diagnostics : state-of-the-art and beyond
  • 2016
  • Ingår i: Haematologica. - : Ferrata Storti Foundation (Haematologica). - 0390-6078 .- 1592-8721. ; 101:9, s. 1002-1009
  • Forskningsöversikt (refereegranskat)abstract
    • Similar to the inherent clinical heterogeneity of most, if not all, lymphoma entities, the genetic landscape of these tumors is markedly complex in the majority of cases, with a rapidly growing list of recurrently mutated genes discovered in recent years by next-generation sequencing technology. Whilst a few genes have been implied to have diagnostic, prognostic and even predictive impact, most gene mutations still require rigorous validation in larger, preferably prospective patient series, to scrutinize their potential role in lymphoma diagnostics and patient management. In selected entities, a predominantly mutated gene is identified in almost all cases (e.g. Waldenstrom's macroglobulinemia/lymphoplasmacytic lymphoma and hairy-cell leukemia), while for the vast majority of lymphomas a quite diverse mutation pattern is observed, with a limited number of frequently mutated genes followed by a seemingly endless tail of genes with mutations at a low frequency. Herein, the European Expert Group on NGS-based Diagnostics in Lymphomas (EGNL) summarizes the current status of this ever-evolving field, and, based on the present evidence level, segregates mutations into the following categories: i) immediate impact on treatment decisions, ii) diagnostic impact, iii) prognostic impact, iv) potential clinical impact in the near future, or v) should only be considered for research purposes. In the coming years, coordinated efforts aiming to apply targeted next-generation sequencing in large patient series will be needed in order to elucidate if a particular gene mutation will have an immediate impact on the lymphoma classification, and ultimately aid clinical decision making.
  •  
6.
  • Sutton, Lesley-Ann, et al. (författare)
  • Deciphering the molecular landscape in chronic lymphocytic leukemia : time frame of disease evolution
  • 2015
  • Ingår i: Haematologica. - : Ferrata Storti Foundation (Haematologica). - 0390-6078 .- 1592-8721. ; 100:1, s. 7-16
  • Forskningsöversikt (refereegranskat)abstract
    • Dramatic advances in next generation sequencing technologies have provided a novel opportunity to understand the molecular genetics of chronic lymphocytic leukemia through the comprehensive detection of genetic lesions. While progress is being made in elucidating the clinical significance of recurrently mutated genes, layers of complexity have been added to our understanding of chronic lymphocytic leukemia pathogenesis in the guise of the molecular evolution and (sub) clonal architecture of the disease. As we prepare for an era of tailored therapy, we need to appreciate not only the effect mutations have on drug response but also the impact subclones containing specific mutations have at initial presentation, during therapy and upon relapse. Therefore, although the wealth of emerging genetic data has great potential in helping us devise strategies to improve the therapy and prognosis of patients, focused efforts will be required to follow disease evolution, particularly in the context of novel therapies, in order to translate this knowledge into clinical settings.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy