SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0884 0431 OR L773:1523 4681 ;pers:(Vandenput Liesbeth 1974)"

Sökning: L773:0884 0431 OR L773:1523 4681 > Vandenput Liesbeth 1974

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Eriksson, Joel, et al. (författare)
  • Limited Clinical Utility of a Genetic Risk Score for the Prediction of Fracture Risk in Elderly Subjects
  • 2015
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 1523-4681 .- 0884-0431. ; 30:1, s. 184-194
  • Tidskriftsartikel (refereegranskat)abstract
    • It is important to identify the patients at highest risk of fractures. A recent large-scale meta-analysis identified 63 autosomal single-nucleotide polymorphisms (SNPs) associated with bone mineral density (BMD), of which 16 were also associated with fracture risk. Based on these findings, two genetic risk scores (GRS63 and GRS16) were developed. Our aim was to determine the clinical usefulness of these GRSs for the prediction of BMD, BMD change, and fracture risk in elderly subjects. We studied two male (Osteoporotic Fractures in Men Study [MrOS] US, MrOS Sweden) and one female (Study of Osteoporotic Fractures [SOF]) large prospective cohorts of older subjects, looking at BMD, BMD change, and radiographically and/or medically confirmed incident fractures (8067 subjects, 2185 incident nonvertebral or vertebral fractures). GRS63 was associated with BMD (3% of the variation explained) but not with BMD change. Both GRS63 and GRS16 were associated with fractures. After BMD adjustment, the effect sizes for these associations were substantially reduced. Similar results were found using an unweighted GRS63 and an unweighted GRS16 compared with those found using the corresponding weighted risk scores. Only minor improvements in C-statistics (AUC) for fractures were found when the GRSs were added to a base model (age, weight, and height), and no significant improvements in C-statistics were found when they were added to a model further adjusted for BMD. Net reclassification improvements with the addition of the GRSs to a base model were modest and substantially attenuated in BMD-adjusted models. GRS63 is associated with BMD, but not BMD change, suggesting that the genetic determinants of BMD differ from those of BMD change. When BMD is known, the clinical utility of the two GRSs for fracture prediction is limited in elderly subjects. (c) 2014 American Society for Bone and Mineral Research.
  •  
2.
  • Hsu, Y. H., et al. (författare)
  • Meta-Analysis of Genomewide Association Studies Reveals Genetic Variants for Hip Bone Geometry
  • 2019
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431 .- 1523-4681. ; 34:7, s. 1284-1296
  • Tidskriftsartikel (refereegranskat)abstract
    • Hip geometry is an important predictor of fracture. We performed a meta-analysis of GWAS studies in adults to identify genetic variants that are associated with proximal femur geometry phenotypes. We analyzed four phenotypes: (i) femoral neck length; (ii) neck-shaft angle; (iii) femoral neck width, and (iv) femoral neck section modulus, estimated from DXA scans using algorithms of hip structure analysis. In the Discovery stage, 10 cohort studies were included in the fixed-effect meta-analysis, with up to 18,719 men and women ages 16 to 93 years. Association analyses were performed with similar to 2.5 million polymorphisms under an additive model adjusted for age, body mass index, and height. Replication analyses of meta-GWAS significant loci (at adjusted genomewide significance [GWS], threshold p <= 2.6 x 10(-8)) were performed in seven additional cohorts in silico. We looked up SNPs associated in our analysis, for association with height, bone mineral density (BMD), and fracture. In meta-analysis (combined Discovery and Replication stages), GWS associations were found at 5p15 (IRX1 and ADAMTS16); 5q35 near FGFR4; at 12p11 (in CCDC91); 11q13 (near LRP5 and PPP6R3 (rs7102273)). Several hip geometry signals overlapped with BMD, including LRP5 (chr. 11). Chr. 11 SNP rs7102273 was associated with any-type fracture (p = 7.5 x 10(-5)). We used bone transcriptome data and discovered several significant eQTLs, including rs7102273 and PPP6R3 expression (p = 0.0007), and rs6556301 (intergenic, chr.5 near FGFR4) and PDLIM7 expression (p = 0.005). In conclusion, we found associations between several genes and hip geometry measures that explained 12% to 22% of heritability at different sites. The results provide a defined set of genes related to biological pathways relevant to BMD and etiology of bone fragility. (c) 2019 American Society for Bone and Mineral Research.
  •  
3.
  • Kemp, John P, et al. (författare)
  • Does bone resorption stimulate periosteal expansion? A cross sectional analysis of β-C-telopeptides of type I collagen (CTX), genetic markers of the RANKL pathway, and periosteal circumference as measured by pQCT.
  • 2014
  • Ingår i: Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. - : Wiley. - 1523-4681. ; 29:4, s. 1015-1024
  • Tidskriftsartikel (refereegranskat)abstract
    • We hypothesised that bone resorption acts to increase bone strength through stimulation of periosteal expansion. Hence, we examined whether bone resorption, as reflected by serum β-C-telopeptides of type I collagen (CTX), is positively associated with periosteal circumference (PC), in contrast to inverse associations with parameters related to bone remodelling such as cortical bone mineral density (BMDC ). CTX and mid-tibial pQCT scans were available in 1130 adolescents (mean age 15.5 years) from the Avon Longitudinal Study of Parents and Children (ALSPAC). Analyses were adjusted for age, gender, time of sampling, tanner stage, lean mass, fat mass and height. CTX was positively related to PC [β= 0.19 (0.13, 0.24)] (coefficient=SD change per SD increase in CTX, 95% CI)], but inversely associated with BMDC [β= -0.46 (-0.52,-0.40)] and cortical thickness [β= -0.11 (-0.18, -0.03)]. CTX was positively related to bone strength as reflected by the strength-strain index (SSI) [β= 0.09 (0.03, 0.14)]. To examine the causal nature of this relationship, we then analysed whether SNPs within key osteoclast regulatory genes, known to reduce areal/cortical BMD, conversely increase PC. Fifteen such genetic variants within or proximal to genes encoding RANK, RANKL and OPG were identified by literature search. Six of the 15 alleles that were inversely related to BMD were positively related to CTX (P<0.05 cut-off) (n=2379). Subsequently, we performed a meta-analysis of associations between these SNPs and PC in ALSPAC (n=3382), Gothenburg Osteoporosis and Obesity Determinants (GOOD) (n=938) and the Young Finns Study (YFS) (n=1558). Five of the 15 alleles that were inversely related to BMD were positively related to PC (P<0.05 cut-off). We conclude that despite having lower BMD, individuals with a genetic predisposition to higher bone resorption have greater bone size, suggesting that higher bone resorption is permissive for greater periosteal expansion.
  •  
4.
  • Liu, Ching-Ti, et al. (författare)
  • Assessment of gene-by-sex interaction effect on bone mineral density
  • 2012
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 1523-4681 .- 0884-0431. ; 27:10, s. 2051-2064
  • Tidskriftsartikel (refereegranskat)abstract
    • Sexual dimorphism in various bone phenotypes, including bone mineral density (BMD), is widely observed; however, the extent to which genes explain these sex differences is unclear. To identify variants with different effects by sex, we examined gene-by-sex autosomal interactions genome-wide, and performed expression quantitative trait loci (eQTL) analysis and bioinformatics network analysis. We conducted an autosomal genome-wide meta-analysis of gene-by-sex interaction on lumbar spine (LS) and femoral neck (FN) BMD in 25,353 individuals from 8 cohorts. In a second stage, we followed up the 12 top single-nucleotide polymorphisms (SNPs; p?
  •  
5.
  • Mellström, Dan, 1945, et al. (författare)
  • Older men with low serum estradiol and high serum SHBG have an increased risk of fractures
  • 2008
  • Ingår i: J Bone Miner Res. - : Wiley. - 1523-4681 .- 0884-0431. ; 23:10, s. 1552-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoporosis-related fractures constitute a major health concern not only in women but also in men. To study the predictive role of serum sex steroids for fracture risk in men, serum sex steroids were analyzed by the specific gas chromatography-mass spectrometry technique at baseline in older men (n = 2639; mean, 75 yr of age) of the prospective population-based MrOS Sweden cohort. Fractures occurring after baseline were validated (average follow-up of 3.3 yr). The incidence for having at least one validated fracture after baseline was 20.9/1000 person-years. Estradiol (E2; hazard ratio [HR] per SD decrease, 1.34; 95% CI, 1.22-1.49), free estradiol (fE2; HR per SD decrease, 1.41; 95% CI, 1.28-1.55), testosterone (T; HR per SD decrease, 1.27; 95% CI, 1.16-1.39), and free testosterone (fT; HR per SD decrease, 1.32; 95% CI, 1.21-1.44) were all inversely, whereas sex hormone-binding globulin (SHBG; HR per SD increase, 1.41; 95% CI, 1.22-1.63) was directly related to fracture risk. Multivariable proportional hazards regression models, adjusted for age, suggested that fE2 and SHBG (p
  •  
6.
  • Nielson, Carrie M., et al. (författare)
  • Novel Genetic Variants Associated With Increased Vertebral Volumetric BMD, Reduced Vertebral Fracture Risk, and Increased Expression of SLC1A3 and EPHB2
  • 2016
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431. ; 31:12, s. 2085-2097
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome-wide association studies (GWASs) have revealed numerous loci for areal bone mineral density (aBMD). We completed the first GWAS meta-analysis (n=15,275) of lumbar spine volumetric BMD (vBMD) measured by quantitative computed tomography (QCT), allowing for examination of the trabecular bone compartment. SNPs that were significantly associated with vBMD were also examined in two GWAS meta-analyses to determine associations with morphometric vertebral fracture (n=21,701) and clinical vertebral fracture (n=5893). Expression quantitative trait locus (eQTL) analyses of iliac crest biopsies were performed in 84 postmenopausal women, and murine osteoblast expression of genes implicated by eQTL or by proximity to vBMD-associated SNPs was examined. We identified significant vBMD associations with five loci, including: 1p36.12, containing WNT4 and ZBTB40; 8q24, containing TNFRSF11B; and 13q14, containing AKAP11 and TNFSF11. Two loci (5p13 and 1p36.12) also contained associations with radiographic and clinical vertebral fracture, respectively. In 5p13, rs2468531 (minor allele frequency [MAF]=3%) was associated with higher vBMD (β=0.22, p=1.9×10-8) and decreased risk of radiographic vertebral fracture (odds ratio [OR]=0.75; false discovery rate [FDR] p=0.01). In 1p36.12, rs12742784 (MAF=21%) was associated with higher vBMD (β=0.09, p=1.2×10-10) and decreased risk of clinical vertebral fracture (OR=0.82; FDR p=7.4×10-4). Both SNPs are noncoding and were associated with increased mRNA expression levels in human bone biopsies: rs2468531 with SLC1A3 (β=0.28, FDR p=0.01, involved in glutamate signaling and osteogenic response to mechanical loading) and rs12742784 with EPHB2 (β=0.12, FDR p=1.7×10-3, functions in bone-related ephrin signaling). Both genes are expressed in murine osteoblasts. This is the first study to link SLC1A3 and EPHB2 to clinically relevant vertebral osteoporosis phenotypes. These results may help elucidate vertebral bone biology and novel approaches to reducing vertebral fracture incidence.
  •  
7.
  • Ohlsson, Claes, 1965, et al. (författare)
  • Low Serum DHEAS Predicts Increased Fracture Risk in Older Men: The MrOS Sweden Study
  • 2017
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431 .- 1523-4681. ; 32:8, s. 1607-1614
  • Tidskriftsartikel (refereegranskat)abstract
    • The adrenal-derived hormones dehydroepiandrosterone (DHEA) and its sulfate (DHEAS) are the most abundant circulating hormones and their levels decline substantially with age. DHEAS is considered an inactive precursor, which is converted into androgens and estrogens via local metabolism in peripheral target tissues. The predictive value of serum DHEAS for fracture risk is unknown. The aim of this study was, therefore, to assess the associations between baseline DHEAS levels and incident fractures in a large cohort of older men. Serum DHEAS levels were analyzed with mass spectrometry in the population-based Osteoporotic Fractures in Men study in Sweden (n = 2568, aged 69 to 81 years). Incident X-ray validated fractures (all, n = 594; non-vertebral major osteoporotic, n = 255; hip, n = 175; clinical vertebral, n = 206) were ascertained during a median follow-up of 10.6 years. DHEAS levels were inversely associated with the risk of any fracture (hazard ratio [HR] per SD decrease = 1.14, 95% confidence interval [CI] 1.05-1.24), non-vertebral major osteoporotic fractures (HR = 1.31, 95% CI 1.16-1.48), and hip fractures (HR = 1.18, 95% CI 1.02-1.37) but not clinical vertebral fractures (HR = 1.09, 95% CI 0.95-1.26) in Cox regression models adjusted for age, body mass index (BMI) and prevalent fractures. Further adjustment for traditional risk factors for fracture, bone mineral density (BMD), and/or physical performance variables as well as serum sex steroid levels only slightly attenuated the associations between serum DHEAS and fracture risk. Similarly, the point estimates were only marginally reduced after adjustment for FRAX estimates with BMD. The inverse association between serum DHEAS and all fractures or major osteoporotic fractures was nonlinear, with a substantial increase in fracture risk (all fractures 22%, major osteoporotic fractures 33%) for those participants with serum DHEAS levels below the median (0.60 mg/mL). In conclusion, low serum DHEAS levels are a risk marker of mainly non-vertebral fractures in older men, of whom those with DHEAS levels below 0.60 mg/mL are at highest risk. (C) The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.
  •  
8.
  • Ohlsson, Claes, 1965, et al. (författare)
  • Older Men With Low Serum IGF-1 Have an Increased Risk of Incident Fractures : The MrOS Sweden Study
  • 2011
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431 .- 1523-4681. ; 26:4, s. 865-872
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoporosis-related fractures constitute a major health concern not only in women but also in men. Insulin-like growth factor 1 (IGF-1) is a key determinant of bone mass, but the association between serum IGF-1 and incident fractures in men remains unclear. To determine the predictive value of serum IGF-1 for fracture risk in men, older men (n = 2902, mean age of 75 years) participating in the prospective, population-based Osteoporotic Fractures in Men (MrOS) Sweden study were followed for a mean of 3.3 years. Serum IGF-1 was measured at baseline by radioimmunoassay. Fractures occurring after the baseline visit were validated. In age-adjusted hazards regression analyses, serum IGF-1 associated inversely with risk of all fractures [hazard ratio (HR) per SD decrease = 1.23, 95% confidence interval (CI) 1.07-1.41], hip fractures (HR per SD decrease = 1.45, 95% CI 1.07-1.97), and clinical vertebral fractures (HR per SD decrease = 1.40, 95% CI 1.10-1-78). The predictive role of serum IGF-1 for fracture risk was unaffected by adjustment for height, weight, prevalent fractures, falls, and major prevalent diseases. Further adjustment for bone mineral density (BMD) resulted in an attenuated but still significant association between serum IGF-1 and fracture risk. Serum IGF-1 below but not above the median was inversely related to fracture incidence. The population-attributable risk proportion was 7.5% for all fractures and 22.9% for hip fractures. Taken together, older men with low serum IGF-1 have an increased fracture risk, especially for the two most important fracture types, hip and vertebral fractures. The association between serum IGF-1 and fracture risk is partly mediated via BMD.
  •  
9.
  • Ohlsson, Claes, 1965, et al. (författare)
  • Serum DHEA and Its Sulfate Are Associated With Incident Fall Risk in Older Men: The MrOS Sweden Study
  • 2018
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 0884-0431 .- 1523-4681. ; 33:7, s. 1227-1232
  • Tidskriftsartikel (refereegranskat)abstract
    • The adrenal-derived hormones dehydroepiandrosterone (DHEA) and its sulfate (DHEAS) are the most abundant circulating hormones and their levels decline substantially with age. Many of the actions of DHEAS are considered to be mediated through metabolism into androgens and estrogens in peripheral target tissues. The predictive value of serum DHEA and DHEAS for the likelihood of falling is unknown. The aim of this study was, therefore, to assess the associations between baseline DHEA and DHEAS levels and incident fall risk in a large cohort of older men. Serum DHEA and DHEAS levels were analyzed with mass spectrometry in the population-based Osteoporotic Fractures in Men study in Sweden (n=2516, age 69 to 81 years). Falls were ascertained every 4 months by mailed questionnaires. Associations between steroid hormones and falls were estimated by generalized estimating equations. During a mean follow-up of 2.7 years, 968 (38.5%) participants experienced a fall. High serum levels of both DHEA (odds ratio [OR] per SD increase 0.85; 95% CI, 0.78 to 0.92) and DHEAS (OR 0.88, 95% CI, 0.81 to 0.95) were associated with a lower incident fall risk in models adjusted for age, BMI, and prevalent falls. Further adjustment for serum sex steroids or age-related comorbidities only marginally attenuated the associations between DHEA or DHEAS and the likelihood of falling. Moreover, the point estimates for DHEA and DHEAS were only slightly reduced after adjustment for lean mass and/or grip strength. Also, the addition of the narrow walk test did not substantially alter the associations between serum DHEA or DHEAS and fall risk. Finally, the association with incident fall risk remained significant for DHEA but not for DHEAS after simultaneous adjustment for lean mass, grip strength, and the narrow walk test. This suggests that the associations between DHEA and DHEAS and falls are only partially mediated via muscle mass, muscle strength, and/or balance. In conclusion, older men with high DHEA or DHEAS levels have a lesser likelihood of a fall. (c) 2018 American Society for Bone and Mineral Research.
  •  
10.
  • Orwoll, Eric S., et al. (författare)
  • The Limited Clinical Utility of Testosterone, Estradiol, and Sex Hormone Binding Globulin Measurements in the Prediction of Fracture Risk and Bone Loss in Older Men
  • 2017
  • Ingår i: Journal of Bone and Mineral Research. - : WILEY. - 0884-0431 .- 1523-4681. ; 32:3, s. 633-640
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurement of serum testosterone (T) levels is recommended in the evaluation of osteoporosis in older men and estradiol (E2) and sex hormone binding globulin (SHBG) levels are associated with the rate of bone loss and fractures, but the clinical utility of sex steroid and SHBG measurements for the evaluation of osteoporosis in men has not been examined. To evaluate whether measurements of T, E2, and/or SHBG are useful for the prediction of fracture risk or the rate of bone loss in older men, we analyzed longitudinal data from 5487 community-based men participating in the Osteoporotic Fractures in Men (MrOS) study in the United States, Sweden, and Hong Kong. Serum T, E2, and SHBG levels were assessed at baseline; incident fractures were self-reported at 4-month intervals with radiographic verification (US), or ascertained via national health records (Sweden, Hong Kong). Rate of bone loss was assessed by serial measures of hip bone mineral density (BMD). We used receiver operating characteristic (ROC) curves, net reclassification improvement (NRI), and integrated discrimination improvement (IDI) to assess improvement in prediction. Mean age at baseline was 72 to 75 years and the prevalence of low T levels (<300 ng/dL) was 7.6% to 21.3% in the three cohorts. There were 619 incident major osteoporotic and 266 hip fractures during follow-up of approximately 10 years. Based on ROC curves, there were no improvements in fracture risk discrimination for any biochemical measure when added to models, including the Fracture Risk Assessment Tool (FRAX) with BMD. Although minor improvements in NRI were observed for the dichotomous parameters low bioavailable E2 (BioE2) (<11.4 pg/mL) and high SHBG(>59.1 nM), neither sex steroids nor SHBG provided clinically useful improvement in fracture risk discrimination. Similarly, they did not contribute to the prediction of BMD change. In conclusion, there is limited clinical utility of serum E2, T, and SHBG measures for the evaluation of osteoporosis risk in elderly men.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy