SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0885 6087 OR L773:1099 1085 ;lar1:(slu)"

Sökning: L773:0885 6087 OR L773:1099 1085 > Sveriges Lantbruksuniversitet

  • Resultat 1-10 av 73
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ali, Genevieve, et al. (författare)
  • Comparison of threshold hydrologic response across northern catchments
  • 2015
  • Ingår i: Hydrological Processes. - : Wiley. - 0885-6087 .- 1099-1085. ; 29:16, s. 3575-3591
  • Tidskriftsartikel (refereegranskat)abstract
    • Nine mid-latitude to high-latitude headwater catchments - part of the Northern Watershed Ecosystem Response to Climate Change (North-Watch) programme - were used to analyze threshold response to rainfall and snowmelt-driven events and link the different responses to the catchment characteristics of the nine sites. The North-Watch data include daily time-series of various lengths of multiple variables such as air temperature, precipitation and discharge. Rainfall and meltwater inputs were differentiated using a degree-day snowmelt approach. Distinct hydrological events were identified, and precipitation-runoff response curves were visually assessed. Results showed that eight of nine catchments showed runoff initiation thresholds and effective precipitation input thresholds. For rainfall-triggered events, catchment hydroclimatic and physical characteristics (e.g. mean annual air temperature, median flow path distance to the stream, median sub-catchment area) were strong predictors of threshold strength. For snowmelt-driven events, however, thresholds and the factors controlling precipitation-runoff response were difficult to identify. The variability in catchments responses to snowmelt was not fully explained by runoff initiation thresholds and input magnitude thresholds. The quantification of input intensity thresholds (e.g. snow melting and permafrost thawing rates) is likely required for an adequate characterization of nonlinear spring runoff generation in such northern environments.
  •  
2.
  • Ameli, A. A., et al. (författare)
  • The exponential decline in saturated hydraulic conductivity with depth : a novel method for exploring its effect on water flow paths and transit time distribution
  • 2016
  • Ingår i: Hydrological Processes. - : Wiley. - 0885-6087 .- 1099-1085. ; 30:14, s. 2438-2450
  • Tidskriftsartikel (refereegranskat)abstract
    • The strong vertical gradient in soil and subsoil saturated hydraulic conductivity is characteristic feature of the hydrology of catchments. Despite the potential importance of these strong gradients, they have proven difficult to model using robust physically based schemes. This has hampered the testing of hypotheses about the implications of such vertical gradients for subsurface flow paths, residence times and transit time distribution. Here we present a general semi-analytical solution for the simulation of 2D steady-state saturated-unsaturated flow in hillslopes with saturated hydraulic conductivity that declines exponentially with depth. The grid-free solution satisfies mass balance exactly over the entire saturated and unsaturated zones. The new method provides continuous solutions for head, flow and velocity in both saturated and unsaturated zones without any interpolation process as is common in discrete numerical schemes. This solution efficiently generates flow pathlines and transit time distributions in hillslopes with the assumption of depth-varying saturated hydraulic conductivity. The model outputs reveal the pronounced effect that changing the strength of the exponential decline in saturated hydraulic conductivity has on the flow pathlines, residence time and transit time distribution. This new steady-state model may be useful to others for posing hypotheses about how different depth functions for hydraulic conductivity influence catchment hydrological response.
  •  
3.
  • Amvrosiadi, Nino, et al. (författare)
  • Water storage dynamics in a till hillslope : the foundation for modeling flows and turnover times
  • 2017
  • Ingår i: Hydrological Processes. - : John Wiley and Sons Ltd. - 0885-6087 .- 1099-1085. ; 31:1, s. 4-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies on hydrology, biogeochemistry, or mineral weathering often rely on assumptions about flow paths, water storage dynamics, and transit times. Testing these assumptions requires detailed hydrometric data that are usually unavailable at the catchment scale. Hillslope studies provide an alternative for obtaining a better understanding, but even on such well-defined and delimited scales, it is rare to have a comprehensive set of hydrometric observations from the water divide down to the stream that can constrain efforts to quantify water storage, movement, and turnover time. Here, we quantified water storage with daily resolution in a hillslope during the course of almost an entire year using hydrological measurements at the study site and an extended version of the vertical equilibrium model. We used an exponential function to simulate the relationship between hillslope discharge and water table; this was used to derive transmissivity profiles along the hillslope and map mean pore water velocities in the saturated zone. Based on the transmissivity profiles, the soil layer transmitting 99% of lateral flow to the stream had a depth that ranged from 8.9 m at the water divide to under 1 m closer to the stream. During the study period, the total storage of this layer varied from 1189 to 1485 mm, resulting in a turnover time of 2172 days. From the pore water velocities, we mapped the time it would take a water particle situated at any point of the saturated zone anywhere along the hillslope to exit as runoff. Our calculations point to the strengths as well as limitations of simple hydrometric data for inferring hydrological properties and water travel times in the subsurface. 
  •  
4.
  • Barron, Jennie (författare)
  • Establishing irrigation potential of a hillside aquifer in the African highlands
  • 2020
  • Ingår i: Hydrological Processes. - : Wiley. - 0885-6087 .- 1099-1085. ; 34, s. 1741-1753
  • Tidskriftsartikel (refereegranskat)abstract
    • Feeding 9 billion people in 2050 will require sustainable development of all water resources, both surface and subsurface. Yet, little is known about the irrigation potential of hillside shallow aquifers in many highland settings in sub-Saharan Africa that are being considered for providing irrigation water during the dry monsoon phase for smallholder farmers. Information on the shallow groundwater being available in space and time on sloping lands might aid in increasing food production in the dry monsoon phase. Therefore, the research objective of this work is to estimate potential groundwater storage as a potential source of irrigation water for hillside aquifers where lateral subsurface flow is dominant. The research was carried out in the Robit Bata experimental watershed in the Lake Tana basin which is typical of many undulating watersheds in the Ethiopian highlands. Farmers have excavated more than 300 hand dug wells for irrigation. We used 42 of these wells to monitor water table fluctuation from April 16, 2014 to December 2015. Precipitation and runoff data were recorded for the same period. The temporal groundwater storage was estimated using two methods: one based on the water balance with rainfall as input and baseflow and evaporative losses leaving the watershed as outputs; the second based on the observed rise and fall of water levels in wells. We found that maximum groundwater storage was at the end of the rain phase in September after which it decreased linearly until the middle of December due to short groundwater retention times. In the remaining part of the dry season period, only wells located close to faults contained water. Thus, without additional water sources, sloping lands can only be used for significant irrigation inputs during the first 3 months out of the 8 months long dry season.
  •  
5.
  • Bieroza, Magdalena (författare)
  • Fingerprinting hydrological and biogeochemical drivers of freshwater quality
  • 2020
  • Ingår i: Hydrological Processes. - : Wiley. - 0885-6087 .- 1099-1085. ; 35
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the interplay between hydrological flushing and biogeochemical cycling in streams is now possible owing to advances in high-frequency water quality measurements with in situ sensors. It is often assumed that storm events are periods when biogeochemical processes become suppressed and longitudinal transport of solutes and particulates dominates. However, high-frequency data show that diel cycles are a common feature of water quality time series and can be preserved during storm events, especially those of low-magnitude. In this study, we mine a high-frequency dataset and use two key hydrochemical indices, hysteresis and flushing index to evaluate the diversity of concentration-discharge relationships in third order agricultural stream. We show that mobilization patterns, inferred from the hysteresis index, change on a seasonal basis, with a predominance of rapid mobilization from surface and near stream sources during winter high-magnitude storm events and of delayed mobilization from subsurface sources during summer low-magnitude storm events. Using dynamic harmonic regression, we were able to separate concentration signals during storm events into hydrological flushing (using trend as a proxy) and biogeochemical cycling (using amplitude of a diel cycle as a proxy). We identified three groups of water quality parameters depending on their typical c-q response: flushing dominated parameters (phosphorus and sediments), mixed flushing and cycling parameters (nitrate nitrogen, specific conductivity and pH) and cycling dominated parameters (dissolved oxygen, redox potential and water temperature). Our results show that despite large storm to storm diversity in hydrochemical responses, storm event magnitude and timing have a critical role in controlling the type of mobilization, flushing and cycling behaviour of each water quality constituent. Hydrochemical indices can be used to fingerprint the effect of hydrological disturbance on freshwater quality and can be useful in determining the impacts of global change on stream ecology.
  •  
6.
  • Bishop, Kevin, et al. (författare)
  • A primer for hydrology : the beguiling simplicity of Water's journey from rain to stream at 30 Preface
  • 2015
  • Ingår i: Hydrological Processes. - : Wiley. - 0885-6087 .- 1099-1085. ; 29:16, s. 3443-3446
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Water's journey from rain to stream by Harald Grip and Allan Rodhe (1985, in Swedish: Vattnets vag fran regn till back) was one of the first textbooks to present groundwater contributions as a major feature of runoff generation, with implications for water quality and management. Three decades later, we have the privilege of presenting a special issue of Hydrological Processes, Runoff Generation in a Nordic Light: 30Years with Water's Journey from Rain to Stream' that seeks to introduce the book to a larger audience and continue the journey of ideas that the authors set in motion with their book.
  •  
7.
  • Bishop, Kevin, et al. (författare)
  • A water cycle for the Anthropocene
  • 2019
  • Ingår i: Hydrological Processes. - : Wiley. - 0885-6087 .- 1099-1085. ; 33, s. 3046-3052
  • Tidskriftsartikel (refereegranskat)
  •  
8.
  • Bishop, Kevin, et al. (författare)
  • Water storage in a till catchment. II : Implications of transmissivity feedback for flow paths and turnover times
  • 2011
  • Ingår i: Hydrological Processes. - : Wiley. - 0885-6087 .- 1099-1085. ; 25:25, s. 3950-3959
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper explores the flow paths and turnover times within a catchment characterized by the transmissivity feedback mechanism where there is a strong increase in the saturated hydraulic conductivity towards the soil surface and precipitation inputs saturate progressively more superficial layers of the soil profile. The analysis is facilitated by the correlation between catchment water storage and groundwater levels, which made it possible to model the daily spatial distribution of water storage, both vertically in different soil horizons and horizontally across a 6300-m2 till catchment. Soil properties and episodic precipitation input dynamics, combined with the influence of topographic features, concentrate flow in the horizontal, vertical, and temporal dimensions. Within the soil profile, there was a vertical concentration of lateral flow to superficial soil horizons (upper 30?cm of the soil), where much of the annual flow occurred during runoff episodes. Overland flow from a limited portion of the catchment can contribute to peak flows but is not a necessary condition for runoff episodes. The spatial concentration of flow, and the episodic nature of runoff events, resulted in a strong and spatially structured differentiation of local flow velocities within the catchment. There were large differences in the time spent by the laterally flowing water at different depths, with turnover times of lateral flow across a 1-m-wide soil pedon ranging from under 1?h at 10- to 20-cm depth to a month at 70- to 80-cm depth. In many regards, the hydrology of this catchment appears typical of the hydrology in till soils, which are widespread in Fenno-Scandia. Copyright (c) 2011 John Wiley & Sons, Ltd.
  •  
9.
  • Carey, Sean K., et al. (författare)
  • Inter-comparison of hydro-climatic regimes across northern catchments : synchronicity, resistance and resilience
  • 2010
  • Ingår i: Hydrological Processes. - : Wiley. - 0885-6087 .- 1099-1085. ; 24:24, s. 3591-3602
  • Tidskriftsartikel (refereegranskat)abstract
    • The higher mid-latitudes of the Northern Hemisphere are particularly sensitive to climate change as small differences in temperature determine frozen ground status, precipitation phase, and the magnitude and timing of snow accumulation and melt. An international inter-catchment comparison program, North-Watch, seeks to improve our understanding of the sensitivity of northern catchments to climate change by examining their hydrological and biogeochemical responses. The catchments are located in Sweden (Krycklan), Scotland (Mharcaidh, Girnock and Strontian), the United States (Sleepers River, Hubbard Brook and HJ Andrews) and Canada (Catamaran, Dorset and Wolf Creek). This briefing presents the initial stage of the North-Watch program, which focuses on how these catchments collect, store and release water and identify 'types' of hydro-climatic catchment response. At most sites, a 10-year data of daily precipitation, discharge and temperature were compiled and evaporation and storage were calculated. Inter-annual and seasonal patterns of hydrological processes were assessed via normalized fluxes and standard flow metrics. At the annual-scale, relations between temperature, precipitation and discharge were compared, highlighting the role of seasonality, wetness and snow/frozen ground. The seasonal pattern and synchronicity of fluxes at the monthly scale provided insight into system memory and the role of storage. We identified types of catchments that rapidly translate precipitation into runoff and others that more readily store water for delayed release. Synchronicity and variance of rainfall-runoff patterns were characterized by the coefficient of variation (cv) of monthly fluxes and correlation coefficients. Principal component analysis (PCA) revealed clustering among like catchments in terms of functioning, largely controlled by two components that (i) reflect temperature and precipitation gradients and the correlation of monthly precipitation and discharge and (ii) the seasonality of precipitation and storage. By advancing the ecological concepts of resistance and resilience for catchment functioning, results provided a conceptual framework for understanding susceptibility to hydrological change across northern catchments.
  •  
10.
  • Eklöf, Karin, et al. (författare)
  • Land-use dominates climate controls on nitrogen and phosphorus export from managed and natural Nordic headwater catchments
  • 2020
  • Ingår i: Hydrological Processes. - : Wiley. - 0885-6087 .- 1099-1085. ; 34, s. 4831-4850
  • Tidskriftsartikel (refereegranskat)abstract
    • Agricultural, forestry-impacted and natural catchments are all vectors of nutrient loading in the Nordic countries. Here, we present concentrations and fluxes of total nitrogen (totN) and phosphorus (totP) from 69 Nordic headwater catchments (Denmark: 12, Finland:18, Norway:17, Sweden:22) between 2000 and 2018. Catchments span the range of Nordic climatic and environmental conditions and include natural sites and sites impacted by agricultural and forest management. Concentrations and fluxes of totN and totP were highest in agricultural catchments, intermediate in forestry-impacted and lowest in natural catchments, and were positively related %agricultural land cover and summer temperature. Summer temperature may be a proxy for terrestrial productivity, while %agricultural land cover might be a proxy for catchment nutrient inputs. A regional trend analysis showed significant declines in N concentrations and export across agricultural (-15 mu g totN L-1 year(-1)) and natural (-0.4 mu g NO3-N L-1 year(-1)) catchments, but individual sites displayed few long-term trends in concentrations (totN: 22%, totP: 25%) or export (totN: 6%, totP: 9%). Forestry-impacted sites had a significant decline in totP (-0.1 mu g P L-1 year(-1)). A small but significant increase in totP fluxes (+0.4 kg P km(-2) year(-1)) from agricultural catchments was found, and countries showed contrasting patterns. Trends in annual concentrations and fluxes of totP and totN could not be explained in a straightforward way by changes in runoff or climate. Explanations for the totN decline include national mitigation measures in agriculture international policy to reduced air pollution and, possibly, large-scale increases in forest growth. Mitigation to reduce phosphorus appears to be more challenging than for nitrogen. If the green shift entails intensification of agricultural and forest production, new challenges for protection of water quality will emerge possible exacerbated by climate change. Further analysis of headwater totN and totP export should include seasonal trends, aquatic nutrient species and a focus on catchment nutrient inputs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 73
Typ av publikation
tidskriftsartikel (69)
annan publikation (2)
forskningsöversikt (2)
Typ av innehåll
refereegranskat (71)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Laudon, Hjalmar (27)
Bishop, Kevin (16)
Seibert, Jan (12)
Futter, Martyn (6)
Peichl, Matthias (4)
Tetzlaff, Doerthe (4)
visa fler...
Hasselquist, Niles (4)
Nyberg, Lars, 1962- (3)
Lyon, Steve W. (3)
Soulsby, Chris (3)
Ilstedt, Ulrik (3)
Kuglerova, Lenka (3)
Kolbe, Tamara (2)
Nilsson, Mats (2)
Ottosson Löfvenius, ... (2)
Seibert, J., 1968- (2)
Soulsby, C. (2)
Tetzlaff, D. (2)
McGuire, Kevin (2)
Buttle, Jim (2)
Shanley, Jamie (2)
Kyllmar, Katarina (2)
Peacock, Michael (2)
Svensson, M. (1)
Bahram, Mohammad (1)
Carey, Sean K. (1)
Pilesjö, Petter (1)
Johansson, Göran (1)
Lindroth, Anders (1)
Lannergård, Emma (1)
Rakovic, Jelena (1)
Tenenbaum, David E. (1)
Lundmark, Tomas (1)
Sandström, Camilla, ... (1)
Ågren, Anneli (1)
Ali, Genevieve (1)
McDonnell, Jeffrey J ... (1)
Carey, Sean (1)
Ameli, A. A. (1)
Amvrosiadi, Nino (1)
McDonnell, J. J. (1)
Erlandsson, Martin (1)
Grabs, Thomas J., 19 ... (1)
Ulen, Barbro (1)
Mörth, Magnus (1)
Torstensson, Gunnar (1)
Gustafsson, David (1)
Teuling, Adriaan J. (1)
Wesström, Ingrid (1)
Buffam, I. (1)
visa färre...
Lärosäte
Uppsala universitet (14)
Stockholms universitet (7)
Umeå universitet (5)
Karlstads universitet (3)
visa fler...
Kungliga Tekniska Högskolan (1)
Jönköping University (1)
RISE (1)
visa färre...
Språk
Engelska (73)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (52)
Lantbruksvetenskap (33)
Teknik (3)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy