SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0888 8809 ;pers:(Williams Cecilia 1969)"

Sökning: L773:0888 8809 > Williams Cecilia 1969

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alvarez-Baron, Claudia P, et al. (författare)
  • The two-pore domain potassium channel KCNK5 : induction by estrogen receptor alpha and role in proliferation of breast cancer cells.
  • 2011
  • Ingår i: Molecular Endocrinology. - : The Endocrine Society. - 0888-8809 .- 1944-9917. ; 25:8, s. 1326-36
  • Tidskriftsartikel (refereegranskat)abstract
    • The growth of many human breast tumors requires the proliferative effect of estrogen acting via the estrogen receptor α (ERα). ERα signaling is therefore a clinically important target for breast cancer prevention and therapeutics. Although extensively studied, the mechanism by which ERα promotes proliferation remains to be fully established. We observed an up-regulation of transcript encoding the pH-sensitive two-pore domain potassium channel KCNK5 in a screen for genes stimulated by 17β-estradiol (E2) in the ERα(+) breast cancer cell lines MCF-7 and T47D. KCNK5 mRNA increased starting 1 h after the onset of E2 treatment, and protein levels followed after 12 h. Estrogen-responsive elements are found in the enhancer region of KCNK5, and chromatin immunoprecipitation assays revealed binding of ERα to the KCNK5 enhancer in E2-treated MCF-7 cells. Cells treated with E2 also showed increases in the amplitude of pH-sensitive potassium currents, as assessed by whole-cell recordings. These currents are blocked by clofilium. Although confocal microscopy suggested that most of the channels are located in intracellular compartments, the increase in macroscopic currents suggests that E2 treatment increases the number of active channels at the cell surface. Application of small interfering RNA specific for KCNK5 decreased pH-sensitive potassium currents and also reduced the estrogen-induced proliferation of T47D cells. We conclude that E2 induces the expression of KCNK5 via ERα(+) in breast cancer cells, and this channel plays a role in regulating proliferation in these cell lines. KCNK5 may therefore represent a useful target for treatment, for example, of tamoxifen-resistant breast cancer.
  •  
2.
  • Dey, Prasenjit, et al. (författare)
  • Estrogen receptors β1 and β2 have opposing roles in regulating proliferation and bone metastasis genes in the prostate cancer cell line PC3
  • 2012
  • Ingår i: Molecular Endocrinology. - : The Endocrine Society. - 0888-8809 .- 1944-9917. ; 26:12, s. 1991-2003
  • Tidskriftsartikel (refereegranskat)abstract
    • The estrogen receptor (ER)β1 is successively lost during cancer progression, whereas its splice variant, ERβ2, is expressed in advanced prostate cancer. The latter form of cancer often metastasizes to bone, and we wanted to investigate whether the loss of ERβ1 and/or the expression of ERβ2 affect such signaling pathways in prostate cancer. Using PC3 and 22Rv1 prostate cancer cell lines that stably express ERβ1 or ERβ2, we found that the ERβ variants differentially regulate genes known to affect tumor behavior. We found that ERβ1 repressed the expression of the bone metastasis regulator Runx2 in PC3 cells. By contrast, RUNX2 expression was up-regulated at the mRNA level by ERβ2 in PC3 cells, whereas Slug was up-regulated by ERβ2 in both PC3 and 22Rv1 cells. In addition, the expression of Twist1, a factor whose expression strongly correlates with high Gleason grade prostate carcinoma, was increased by ERβ2. In agreement with the increased Twist1 expression, we found increased expression of Dickkopf homolog 1; Dickkopf homolog 1 is a factor that has been shown to increase the RANK ligand/osteoprotegerin ratio and enhance osteoclastogenesis, indicating that the expression of ERβ2 can cause osteolytic cancer. Furthermore, we found that only ERβ1 inhibited proliferation, whereas ERβ2 increased proliferation. The expression of the proliferation markers Cyclin E, c-Myc, and p45(Skp2) was differentially affected by ERβ1 and ERβ2 expression. In addition, nuclear β-catenin protein and its mRNA levels were reduced by ERβ1 expression. In conclusion, we found that ERβ1 inhibited proliferation and factors known to be involved in bone metastasis, whereas ERβ2 increased proliferation and up-regulated factors involved in bone metastasis. Thus, in prostate cancer cells, ERβ2 has oncogenic abilities that are in strong contrast to the tumor-suppressing effects of ERβ1.
  •  
3.
  • Edvardsson, Karin, et al. (författare)
  • Estrogen receptor β induces antiinflammatory and antitumorigenic networks in colon cancer cells.
  • 2011
  • Ingår i: Molecular Endocrinology. - : The Endocrine Society. - 0888-8809 .- 1944-9917. ; 25:6, s. 969-79
  • Tidskriftsartikel (refereegranskat)abstract
    • Several studies suggest estrogen to be protective against the development of colon cancer. Estrogen receptor β (ERβ) is the predominant estrogen receptor expressed in colorectal epithelium and is the main candidate to mediate the protective effects. We have previously shown that expression of ERβ reduces growth of colorectal cancer in xenografts. Little is known of the actions of ERβ and its effect on gene transcription in colon cancers. To dissect the processes that ERβ mediates and to investigate cell-specific mechanisms, we reexpressed ERβ in three colorectal cancer cell lines (SW480, HT29, and HCT-116) and conducted genome-wide expression studies in combination with gene-pathway analyses and cross-correlation to ERβ-chromatin-binding sites. Although induced gene regulation was cell specific, overrepresentation analysis of functional classes indicated that the same biological themes, including apoptosis, cell differentiation, and regulation of the cell cycle, were affected in all three cell lines. Novel findings include a strong ERβ-mediated down-regulation of IL-6 and downstream networks with significant implications for inflammatory mechanisms involved in colon carcinogenesis. We also discovered cross talk between the suggested nuclear receptor coregulator PROX1 and ERβ, demonstrating that ERβ both regulates and shares target genes with PROX1. The influence of ERβ on apoptosis was further explored using functional studies, which suggested an increased DNA-repair capacity. We conclude that reexpression of ERβ induces transcriptome changes that, through several parallel pathways, converge into antitumorigenic capabilities in all three cell lines. We propose that enhancing ERβ action has potential as a novel therapeutic approach for prevention and/or treatment of colon cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy