SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0888 8809 OR L773:1944 9917 ;lar1:(ki)"

Sökning: L773:0888 8809 OR L773:1944 9917 > Karolinska Institutet

  • Resultat 1-10 av 89
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Al-Khalili, L, et al. (författare)
  • Signaling specificity of interleukin-6 action on glucose and lipid metabolism in skeletal muscle
  • 2006
  • Ingår i: Molecular endocrinology (Baltimore, Md.). - : The Endocrine Society. - 0888-8809 .- 1944-9917. ; 20:12, s. 3364-3375
  • Tidskriftsartikel (refereegranskat)abstract
    • We identified signaling pathways by which IL-6 regulates skeletal muscle differentiation and metabolism. Primary human skeletal muscle cells were exposed to IL-6 (25 ng/ml either acutely or for several days), and small interfering RNA gene silencing was applied to measure glucose and fat metabolism. Chronic IL-6 exposure increased myotube fusion and formation and the mRNA expression of glucose transporter 4, peroxisome proliferator activated receptor (PPAR)α, PPARδ, PPARγ, PPARγ coactivator 1, glycogen synthase, myocyte enhancer factor 2D, uncoupling protein 2, fatty acid transporter 4, and IL-6 (P < 0.05), whereas glucose transporter 1, CCAAT/enhancer-binding protein-α, and uncoupling protein 3 were decreased. IL-6 increased glucose incorporation into glycogen, glucose uptake, lactate production, and fatty acid uptake and oxidation, concomitant with increased phosphorylation of AMP-activated protein kinase (AMPK), signal transducer and activator of transcription 3, and ERK1/2. IL-6 also increased phosphatidylinositol (PI) 3-kinase activity (450%; P < 0.05), which was blunted by subsequent insulin-stimulation (P < 0.05). IL-6-mediated glucose metabolism was suppressed, but lipid metabolism was unaltered, by inhibition of PI3-kinase with LY294002. The small interfering RNA-directed depletion of AMPK reduced IL-6-mediated fatty acid oxidation and palmitate uptake but did not reduce glycogen synthesis. In summary, IL-6 increases glycogen synthesis via a PI3-kinase-dependent mechanism and enhances lipid oxidation via an AMPK-dependent mechanism in skeletal muscle. Thus, IL-6 directly promotes skeletal muscle differentiation and regulates muscle substrate utilization, promoting glycogen storage and lipid oxidation.
  •  
2.
  • Altmae, Signe, et al. (författare)
  • Interactome of Human Embryo Implantation : Identification of Gene Expression Pathways, Regulation, and Integrated Regulatory Networks
  • 2012
  • Ingår i: Molecular Endocrinology. - : The Endocrine Society. - 0888-8809 .- 1944-9917. ; 26:1, s. 203-217
  • Tidskriftsartikel (refereegranskat)abstract
    • A prerequisite for successful embryo implantation is adequate preparation of receptive endometrium and the establishment and maintenance of a viable embryo. The success of implantation further relies upon a two-way dialogue between the embryo and uterus. However, molecular bases of these preimplantation and implantation processes in humans are not well known. We performed genome expression analyses of humanembryos (n = 128) andhumanendometria (n = 8). We integrated these data with protein-protein interactions in order to identify molecular networks within the endometrium and the embryo, and potential embryo-endometrium interactions at the time of implantation. For that, we applied a novel network profiling algorithm HyperModules, which combines topological module identification and functional enrichment analysis. We found a major wave of transcriptional down-regulation in preimplantation embryos. In receptive-stage endometrium, several genes and signaling pathways were identified, including JAK-STAT signaling and inflammatory pathways. The main curated embryo-endometrium interaction network highlighted the importance of cell adhesion molecules in the implantation process. We also identified cytokine-cytokine receptor interactions involved in implantation, where osteopontin (SPP1), leukemia inhibitory factor (LIF) and leptin (LEP) pathways were intertwining. Further, we identified a number of novel players in human embryo-endometrium interactions, such as apolipoprotein D (APOD), endothelin 1 (END1), fibroblast growth factor 7 (FGF7), gastrin (GAST), kringle containing trnasmembrane protein 1 (KREMEN1), neuropilin 1 (NRP1), serpin peptidase inhibitor clade A member 3 (SERPINA3), versican (VCAN), and others. Our findings provide a fundamental resource for better understanding of the genetic network that leads to successful embryo implantation. We demonstrate the first systems biology approach into the complex molecular network of the implantation process in humans.
  •  
3.
  • Amma, LL, et al. (författare)
  • Distinct tissue-specific roles for thyroid hormone receptors beta and alpha1 in regulation of type 1 deiodinase expression
  • 2001
  • Ingår i: Molecular endocrinology (Baltimore, Md.). - : The Endocrine Society. - 0888-8809 .- 1944-9917. ; 15:3, s. 467-475
  • Tidskriftsartikel (refereegranskat)abstract
    • Type 1 deiodinase (D1) metabolizes different forms of thyroid hormones to control levels of T3, the active ligand for thyroid hormone receptors (TR). The D1 gene is itself T3-inducible and here, the regulation of D1 expression by TRα1 and TRβ, which act as T3-dependent transcription factors, was investigated in receptor-deficient mice. Liver and kidney D1 mRNA and activity levels were reduced in TRβ−/− but not TRα1−/− mice. Liver D1 remained weakly T3 inducible in TRβ–/– mice whereas induction was abolished in double mutant TRα1–/–TRβ–/– mice. This indicates that TRβ is primarily responsible for regulating D1 expression whereas TRα1 has only a minor role. In kidney, despite the expression of both TRα1 and TRβ, regulation relied solely on TRβ, thus revealing a marked tissue restriction in TR isotype utilization. Although TRβ and TRα1 mediate similar functions in vitro, these results demonstrate differential roles in regulating D1 expression in vivo and suggest that tissue-specific factors and structural distinctions between TR isotypes contribute to functional specificity. Remarkably, there was an obligatory requirement for a TR, whether TRβ or TRα1, for any detectable D1 expression in liver. This suggests a novel paradigm of gene regulation in which the TR sets both basal expression and the spectrum of induced states. Physiologically, these findings suggest a critical role for TRβ in regulating the thyroid hormone status through D1-mediated metabolism.
  •  
4.
  • Archer, A, et al. (författare)
  • Fasting-induced FGF21 is repressed by LXR activation via recruitment of an HDAC3 corepressor complex in mice
  • 2012
  • Ingår i: Molecular endocrinology (Baltimore, Md.). - : The Endocrine Society. - 1944-9917 .- 0888-8809. ; 26:12, s. 1980-1990
  • Tidskriftsartikel (refereegranskat)abstract
    • The liver plays a pivotal role in the physiological adaptation to fasting and a better understanding of the metabolic adaptive responses may give hints on new therapeutic strategies to control the metabolic diseases. The liver X receptors (LXRs) are well-established regulators of lipid and glucose metabolism. More recently fibroblast growth factor 21 (FGF21) has emerged as an important regulator of energy homeostasis. We hypothesized that the LXR transcription factors could influence Fgf21 expression, which is induced in response to fasting. Wild-type, LXRα−/−, and LXRβ−/− mice were treated for 3 d with vehicle or the LXR agonist GW3965 and fasted for 12 h prior to the killing of the animals. Interestingly, serum FGF21 levels were induced after fasting, but this increase was blunted when the mice were treated with GW3965 independently of genotypes. Compared with wild-type mice, GW3965-treated LXRα−/− and LXRβ−/− mice showed improved insulin sensitivity and enhanced ketogenic response at fasting. Of note is that during fasting, GW3965 treatment tended to reduce liver triglycerides as opposed to the effect of the agonist in the fed state. The LXR-dependent repression of Fgf21 seems to be mainly mediated by the recruitment of LXRβ onto the Fgf21 promoter upon GW3965 treatment. This repression by LXRβ occurs through the recruitment and stabilization of the repressor complex composed of retinoid-related orphan receptor-α/Rev-Erbα/histone deacetylase 3 onto the Fgf21 promoter. Our data clearly demonstrate that there is a cross talk between the LXR and FGF21 signaling pathways in the adaptive response to fasting.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 89

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy