SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0935 1221 OR L773:1617 4011 ;pers:(Skogby Henrik)"

Sökning: L773:0935 1221 OR L773:1617 4011 > Skogby Henrik

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sundvall, Rickard, 1976-, et al. (författare)
  • Dehydration-hydration mechanisms in synthetic Fe-poor diopside
  • 2009
  • Ingår i: European journal of mineralogy. - Stuttgart : E. Schweizerbart'sche Verlagsbuchhandlung. - 0935-1221 .- 1617-4011. ; 21:1, s. 17-26
  • Tidskriftsartikel (refereegranskat)abstract
    • Small amounts (ppm) of OH in nominally anhydrous minerals (NAMs) can have a dramatic effect on the physical properties of the upper mantle. The pyroxenes of the upper mantle have been shown to incorporate substantial numbers of protons forming hydroxyl ions. Enstatite and diopside are the most important endmembers of the pyroxenes in terms of bulk volume in the upper mantle. To further constrain the behavior of hydroxyl ions in clinopyroxene, the dehydration-hydration mechanisms of synthetic 57Fe-doped diopside were investigated. Dehydration was carried out by stepwise heating in air of crystals synthesized at high pressure under water-saturated conditions. FTIR spectra were obtained after each step. Mössbauer spectra were recorded for three of the crystals when there had been a significant decrease in FTIR absorbance intensity. From the Mössbauer spectra we see an increase in the Fe3+ doublet with successive dehydration, although this increase is less than the decrease in OH in terms of atoms per formula unit. This means that the dehydration only partly follows the redox reaction OH− + Fe2+ = O2− + Fe3+ + ½H2, and that additional reactions occur. Hydration experiments were conducted on one crystal in the same manner as the dehydrations, with the exception that hydrogen gas was used during heating. Hydration experiments resulted in re-hydration of the sample to 73 % of the original amount of OH.   The calculated Arrhenius equation derived from the diffusion rates during dehydration along [010] yields an activation energy (Ea) of −292 ± 50 kJ mol−1, and D0 = 10±1.9 + 2.3 m2 s−1. The result of the rehydration experiment agrees well with the established diffusion law. Diffusion rates determined for synthetic diopside are almost two orders of magnitude slower than for synthetic enstatite with comparable Fe contents. Compared to natural diopside, diffusion rates in these synthetic samples are slower, probably because of the low iron content. Ea is similar to that of dehydration of pure and low-Fe enstatite.
  •  
2.
  • Sundvall, Rickard, 1976-, et al. (författare)
  • Hydrogen diffusion in synthetic Fe-free diopside
  • 2009
  • Ingår i: European journal of mineralogy. - Stuttgart : E. Schweizerbart'sche Verlagsbuchhandlung. - 0935-1221 .- 1617-4011. ; 21:5, s. 963-970
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrogen is a widespread trace element in many nominally anhydrous minerals (NAMs) in the Earth's crust and mantle and has profound influence on the physical properties of the host mineral. Of all NAMs from the upper mantle, clinopyroxenes have been shown to contain the highest amount of hydrogen. This study focuses on the dehydration kinetics of pure diopside along [010] and [100]* by thermal annealing under normal atmospheric pressure. The diopside crystals used were synthesized at high pressure under water-saturated conditions. FTIR spectra were obtained after each step, including untreated samples. The Arrhenius equation gives an activation energy (Ea) of -331 ± 50 kJ mol-1 and D0 = 100.9 ± 2.3 m2 s-1 for diffusion along [010]. Diffusion along [100]* gives an Ea-value of -312 ± 55 kJ mol-1 with D0 = 100.5 ± 2.4 m2 s-1. Therefore, our experimental results show no difference between diffusion along [010] and [100]* (within error limits). The diffusion rate in pure synthetic diopside is about one order of magnitude faster than for synthetic diopside with very low Fe contents. A suitable explanation for this behavior is that in the case of low Fe diopside, the rate-limiting process for the protons associated with Fe is probably Fe-diffusion. In contrast, in pure diopside all protons are associated to Mg-defects, which are more mobile than Fe. Nevertheless, compared to natural diopside with appreciable Fe contents, diffusion rates in these synthetic samples are several orders of magnitude slower.
  •  
3.
  •  
4.
  •  
5.
  • Bosi, Ferdinando, et al. (författare)
  • Oxy-foitite, □(Fe2+Al2)Al6(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup
  • 2017
  • Ingår i: European journal of mineralogy. - : Schweizerbart. - 0935-1221 .- 1617-4011. ; 29:5, s. 889-896
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxy-foitite, □(Fe2+Al2)Al6(Si6O18)(BO3)3(OH)3O, is a new mineral of the tourmaline supergroup. It occurs in high-grade migmatitic gneisses of pelitic composition at the Cooma metamorphic Complex (New South Wales, Australia), in association with muscovite, K-feldspar and quartz. Crystals are black with a vitreous luster, sub-conchoidal fracture and gray streak. Oxy-foitite has a Mohs hardness of ∼7, and has a calculated density of 3.143 g/cm3. In plane-polarized light, oxy-foitite is pleochroic (O= dark brown and E = pale brown), uniaxial negative. Oxy-foitite belongs to the trigonal crystal system, space group R3m, a = 15.9387(3) Å, c = 7.1507(1)Å and V = 1573.20(6)Å3,Z = 3. The crystal structure of oxy-foitite was refined to R1 = 1.48% using 3247 unique reflections from single-crystal X-ray diffraction using MoKα radiation. Crystal-chemical analysis resulted in the empirical structural formula: X(□0.53Na0.45Ca0.01K0.01)Σ1.00Y(Al1.53Fe2+1.16Mg0.22Mn2+0.05Zn0.01Ti4+0.03)Σ3.00Z(Al5.47Fe3+0.14Mg0.39)Σ6.00[(Si5.89Al0.11)Σ6.00O18](BO3)3V(OH)3W[O0.57F0.04(OH)0.39]Σ1.00. Oxy-foitite belongs to the X-site vacant group of the tourmaline-supergroup minerals, and shows chemical relationships with foitite through the substitution YAl3++WO2-→YFe2++W(OH)1–.
  •  
6.
  •  
7.
  • Holtstam, Dan, 1963-, et al. (författare)
  • Ferri-taramite, a new member of the amphibole supergroup, from the Jakobsberg Mn-Fe deposit, Varmland, Sweden
  • 2022
  • Ingår i: European Journal of Mineralogy. - : Copernicus GmbH. - 0935-1221 .- 1617-4011. ; 34:5, s. 451-462
  • Tidskriftsartikel (refereegranskat)abstract
    • Ferri-taramite (IMA CNMNC 2021-046), ideally Na-A(B) (CaNa)(C) (Mg3Fe23+)(Si6Al2)O-22(W) (OH)(2), occurs in skarn from the Jakobsberg manganese mine, Varmland, Sweden. Associated minerals are celsian, phlogopite, aegirine-augite, andradite, hancockite, melanotekite, microcline (var. hyalophane), calcite, baryte, prehnite, macedonite and oxyplumboromeite. Conditions of formation, close to peak metamorphism (at circa 650 degrees C and 0.4 GPa), include silica undersaturation, a slightly peralkaline character and relatively high oxygen fugacities. Ferri-taramite forms poikiloblastic crystals up to 5 mm and is dark brownish black with a yellowish grey streak. The amphibole is brittle with an uneven to splintery fracture. Cleavage parallel to {110} is good. Hardness (Mohs) is similar to 6, and D-calc = 3.227(5) g cm(-3). Holotype ferri-taramite has the experimental unit formula (A)(Na0.79K0.16Pb0.01)(Sigma 0.96)(B) (Ca1.26Na0.72Mn0.022+)(Sigma 2)(C )(Mg2.66Mn0.582+ Fe0.162+Zn0.02Fe1.263+ Al0.26Ti0.06)(Sigma)(T)(5.00) (Al1.86Si6.14)Sigma 8O(22)(W) (OH)(2), based on chemical analyses (EDS, laser-ablation ICP-MS) and spectroscopic (Mossbauer, infrared) and single-crystal X-ray diffraction data. The mineral is optically biaxial (-), with alpha = 1.670(5), beta = 1.680(5) and gamma = 1.685(5) in white light and 2 V-meas = 70(10)degrees and 2 V-calc = 70.2 degrees. Ferri-taramite is distinctly pleochroic in transmitted light, with X pale yellow, Y dark brown, Z yellowish brown and absorption Y> Z> X. The eight strongest reflections in the X-ray powder pattern (d values (in angstrom), I-rel, hkl) are 8.44, 60, 110; 3.392, 25, 131; 3.281, 39, 240; 3.140, 100, 310; 2.816, 45, 330; 2.7104, 38, 151; 1.3654, 26, 461; and 1.4451, 33, (6) over bar 61. Refined unit-cell parameters from single-crystal diffraction data are a = 9.89596(13), b = 18.015(2), c = 5.32164(7) angstrom, beta = 105.003(13)degrees and V = 916.38(2) angstrom(3) for Z = 2. Refinement of the crystal structure yielded R = 2.26 % for 2722 reflections with I-0 >2 sigma (I). The Mn2+ and Fe2+ ions show preference for the M1 and M3 octahedrally coordinated sites, whereas Fe3+ is strongly ordered at M2. The A-group cations, K and Na, are split over two subsites, A (m) and A(2), respectively.
  •  
8.
  • Holtstam, Dan, 1963-, et al. (författare)
  • Hjalmarite, a new Na-Mn member of the amphibole supergroup, from Mn skarn in the Långban deposit, Värmland, Sweden.
  • 2019
  • Ingår i: European journal of mineralogy. - : Schweizerbart. - 0935-1221 .- 1617-4011. ; 31, s. 565-574
  • Tidskriftsartikel (refereegranskat)abstract
    • Hjalmarite, ideally ANaB(NaMn)CMg5TSi8O22W(OH)2, is a new root-name member of the amphibole supergroup, discovered in skarn from the Långban Fe-Mn-(Ba-As-Pb-Sb-Be-B) deposit, Filipstad, Värmland, Sweden (IMA-CNMNC 2017-070). It occurs closely associated with mainly rhodonite and quartz. It is grayish white with vitreous luster and non-fluorescent. The crystals are up to 5 mm in length and display splintery fracture and perfect cleavage along {110}. Hjalmarite is colorless (non-pleochroic) in thin section and optically biaxial (-), with α = 1.620(5), β = 1.630(5), γ = 1.640(5). The calculated density is 3.12 Mg/m3. Average VHN100 is 782, corresponding to circa 5½ Mohs. An empirical formula, derived from EPMA analyses in combination with crystal structure refinements, is (Na0.84K0.16)Σ1(Na1.01Mn0.55Ca0.43Sr0.01) Σ2(Mg3.83Mn1.16Al0.01) Σ5(Si7.99Al0.01) Σ8O22(OH1.92F0.08)Σ2. An infra-red spectrum of hjalmarite shows distinct absorption bands at 3673 cm-1 and 3731 cm-1 polarized in the α direction. The eight strongest Bragg peaks in the powder X-ray diffraction pattern are [d (Å), I (%), (hkl)]: 3.164, 100, (310); 2.837, 50, (330); 8.50, 44, (110); 3.302; 40, (240); 1.670, 34, (461); 1.448, 32, (-661); 2.727, 30, (151); 2.183, 18 (261).Single-crystal X-ray diffraction data were collected at 298 K and 180 K. The crystal structure was refined in space group C2/m to R1=2.6% [I>2(I)], with observed unit-cell parameters a = 9.9113(3), b = 18.1361(4), c = 5.2831(5) Å, β=103.658(5)° and V = 922.80(9) Å3 at ambient temperature. The A and M(4) sites split into A(m) (K+), A(2) (Na+), and M(4’) (Mn2+) subsites, respectively. Among the octahedrally coordinated C group cations, Mn2+ orders strongly at the M(2) site. No significant violation of C2/m symmetry or change in the structure topology is detected at low temperature (R1=2.1%). The hjalmarite-bearing skarn formed at peak regional metamorphism, T  ≥ 600°C, at conditions of high SiO2 activity and relatively low oxygen fugacity. The mineral name honors the Swedish geologist and mineralogist S.A. Hjalmar Sjögren (1856–1922).
  •  
9.
  •  
10.
  • Weis, Franz A., et al. (författare)
  • Polarized IR and Raman spectra of zoisite : insights into OH-dipole orientation and the luminescence
  • 2016
  • Ingår i: European journal of mineralogy. - : Schweizerbart. - 0935-1221 .- 1617-4011. ; 38:3, s. 537-543
  • Tidskriftsartikel (refereegranskat)abstract
    • The OH-dipole in the mineral zoisite has been a topic of discussion regarding its general orientation and vibrational modes. We present new polarized single-crystal Raman and infrared spectra and verify the orientation of the OH-dipole along the crystallographic c axis with a slight deviation towards the crystallographic a axis. Polarized Raman and FTIR spectra confirm that the OH band at 3150 cm(-1) corresponds to the O(10)-H center dot center dot center dot O(4) hydrogen bridge and exclude a previously suggested second hydrogen bridge O(10)-H center dot center dot center dot O(2). Further, Raman spectra provide insights on the luminescence of zoisite and the interference of luminescence peaks in the OH-region.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy