SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0935 9648 OR L773:1521 4095 ;pers:(Sun Licheng)"

Sökning: L773:0935 9648 OR L773:1521 4095 > Sun Licheng

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Li, Lin, et al. (författare)
  • Double-Layered NiO Photocathodes for p-Type DSSCs with Record IPCE
  • 2010
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 22:15, s. 1759-1762
  • Tidskriftsartikel (refereegranskat)abstract
    • A way to achieve a high-efficiency dye-sensitized solar cell is to combine an n-type TiO2-based photoanode with a p-type photocathode in a tandem configuration. The development of an efficient photocathode is, at present, the key target. We have optimized the NiO, I-3(-)/I- p-DSSC system to obtain record photocurrent, giving 64% incident photon-to-current conversion efficiency (IPCE) and 5.48 mAcm(-2) J(SC).
  •  
2.
  •  
3.
  • Wang, Chen, et al. (författare)
  • Identification of the Origin for Reconstructed Active Sites on Oxyhydroxide for Oxygen Evolution Reaction
  • 2023
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 35:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The regulation of atomic and electronic structures of active sites plays an important role in the rational design of oxygen evolution reaction (OER) catalysts toward electrocatalytic hydrogen generation. However, the precise identification of the active sites for surface reconstruction behavior during OER remains elusive for water-alkali electrolysis. Herein, irreversible reconstruction behavior accompanied by copper dynamic evolution for cobalt iron layered double hydroxide (CoFe LDH) precatalyst to form CoFeCuOOH active species with high-valent Co species is reported, identifying the origin of reconstructed active sites through operando UV-Visible (UV–vis), in situ Raman, and X-ray absorption fine-structure (XAFS) spectroscopies. Density functional theory analysis rationalizes this typical electronic structure evolution causing the transfer of intramolecular electrons to form ligand holes, promoting the reconstruction of active sites. Specifically, unambiguous identification of active sites for CoFeCuOOH is explored by in situ 18O isotope-labeling differential electrochemical mass spectrometry (DEMS) and supported by theoretical calculation, confirming mechanism switch to oxygen-vacancy-site mechanism (OVSM) pathway on lattice oxygen. This work enables to elucidate the vital role of dynamic active-site generation and the representative contribution of OVSM pathway for efficient OER performance.
  •  
4.
  • Wu, Y., et al. (författare)
  • Triggering Lattice Oxygen Activation of Single-Atomic Mo Sites Anchored on Ni–Fe Oxyhydroxides Nanoarrays for Electrochemical Water Oxidation
  • 2022
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 34:29, s. 2202523-
  • Tidskriftsartikel (refereegranskat)abstract
    • Tuning the reactivity of lattice oxygen is of significance for lowering the energy barriers and accelerating the oxygen evolution reaction (OER). Herein, single-atomic Mo sites are anchored on Ni–Fe oxyhydroxide nanoarrays by a facile metal–organic-framework-derived strategy, exhibiting superior performance toward the OER in alkaline media. In situ electrochemical spectroscopy and isotope-labeling experiments reveal the involvement of lattice oxygen during OER cycles. Combining theoretical and experimental investigations of the electronic configuration, it is comprehensively confirmed that the incorporation of single-atomic Mo sites enables higher oxidation state of the metal and strengthened metal–oxygen hybridization, as well as the formation of oxidized ligand holes above the Fermi level. In a word, the considerable acceleration of water oxidation is achieved via enhancing the reactivity of lattice oxygen and triggering the lattice oxygen activation. This work may provide new insights for designing ideal electrocatalysts via tuning the chemical state and activating the anions ligands. 
  •  
5.
  • Xu, Bo, et al. (författare)
  • Carbazole-Based Hole-Transport Materials for Efficient Solid-State Dye-Sensitized Solar Cells and Perovskite Solar Cells
  • 2014
  • Ingår i: Advanced Materials. - : Wiley-VCH Verlagsgesellschaft. - 0935-9648 .- 1521-4095. ; 26:38, s. 6629-6634
  • Tidskriftsartikel (refereegranskat)abstract
    • (Graph Presented) Two carbazole-based small molecule hole-transport materials (HTMs) are synthesized and investigated in solid-state dye-sensitized solar cells (ssDSCs) and perovskite solar cells (PSCs). The HTM X51-based devices exhibit high power conversion efficiencies (PCEs) of 6.0% and 9.8% in ssDSCs and PSCs, respectively. These results are superior or comparable to those of 5.5% and 10.2%, respectively, obtained for the analogous cells using the state-of-the-art HTM Spiro-OMeTAD.
  •  
6.
  • Zhang, Bo, et al. (författare)
  • Enriching Metal–Oxygen Species and Phosphate Modulating of Active Sites for Robust Electrocatalytical CO2 Reduction
  • 2023
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 35:46
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct electrochemical reduction of CO2 (CO2RR) into value-added chemicals is a promising solution to reduce carbon emissions. The activity of CO2RR is influenced deeply by the reaction microenvironment and electronic properties of the catalysts. Herein, the surface PO43− anions are tuned to modulate the local microenvironment and the electronic properties of the indium-based catalyst with abundant metal–oxygen species enabling efficient electrochemical conversion of CO2 to HCOO−. Indium nanoparticles coupled with PO43− anions (PO43−-In NPs) achieve a high selectivity of HCOO− up to 91.4% at a low potential of −0.98 V versus reversible hydrogen electrode (versus RHE) and a high HCOO− partial current density of 279.3 mA cm−2 at −1.1 V versus RHE in the electrochemical flow cell. In situ and ex situ characterizations confirm the PO43− anions keep stable on the surface of indium during CO2RR, accelerating the generation of OCHO* intermediate. From density functional theory calculations, PO43− anions enrich the metal–oxygen species on the substrate to optimize the electronic structure of the catalysts and induce a local microenvironment with massive K+ ions on the interface, thus reducing the activation energy barrier of CO2RR.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy