SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0952 3480 OR L773:1099 1492 ;hsvcat:2"

Sökning: L773:0952 3480 OR L773:1099 1492 > Teknik

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Eigentler, Thomas Wilhelm, et al. (författare)
  • Wideband Self-Grounded Bow-Tie Antenna for Thermal MR
  • 2020
  • Ingår i: NMR in Biomedicine. - : Wiley. - 0952-3480 .- 1099-1492. ; 33:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of this study was the design, implementation, evaluation and application of a compact wideband self-grounded bow-tie (SGBT) radiofrequency (RF) antenna building block that supports anatomical proton (H-1) MRI, fluorine (F-19) MRI, MR thermometry and broadband thermal intervention integrated in a whole-body 7.0 T system. Design considerations and optimizations were conducted with numerical electromagnetic field (EMF) simulations to facilitate a broadband thermal intervention frequency of the RF antenna building block. RF transmission (B-1(+)) field efficiency and specific absorption rate (SAR) were obtained in a phantom, and the thigh of human voxel models (Ella, Duke) for H-1 and F-19 MRI at 7.0 T. B-1(+) efficiency simulations were validated with actual flip-angle imaging measurements. The feasibility of thermal intervention was examined by temperature simulations (f = 300, 400 and 500 MHz) in a phantom. The RF heating intervention (P-in = 100 W, t = 120 seconds) was validated experimentally using the proton resonance shift method and fiberoptic probes for temperature monitoring. The applicability of the SGBT RF antenna building block for in vivo H-1 and F-19 MRI was demonstrated for the thigh and forearm of a healthy volunteer. The SGBT RF antenna building block facilitated F-19 and H-1 MRI at 7.0 T as well as broadband thermal intervention (234-561 MHz). For the thigh of the human voxel models, a B-1(+) efficiency >= 11.8 mu T/root kW was achieved at a depth of 50 mm. Temperature simulations and heating experiments in a phantom demonstrated a temperature increase Delta T >7 K at a depth of 10 mm. The compact SGBT antenna building block provides technology for the design of integrated high-density RF applicators and for the study of the role of temperature in (patho-) physiological processes by adding a thermal intervention dimension to an MRI device (Thermal MR).
  •  
2.
  • Ferizi, U., et al. (författare)
  • Diffusion MRI microstructure models with in vivo human brain Connectome data: results from a multi-group comparison
  • 2017
  • Ingår i: NMR in Biomedicine. - : Wiley. - 0952-3480 .- 1099-1492. ; 30:9, s. Article no e3734 -
  • Tidskriftsartikel (refereegranskat)abstract
    • A large number of mathematical models have been proposed to describe the measured signal in diffusion-weighted (DW) magnetic resonance imaging (MRI). However, model comparison to date focuses only on specific subclasses, e.g. compartment models or signal models, and little or no information is available in the literature on how performance varies among the different types of models. To address this deficiency, we organized the White Matter Modeling Challenge' during the International Symposium on Biomedical Imaging (ISBI) 2015 conference. This competition aimed to compare a range of different kinds of models in their ability to explain a large range of measurable in vivo DW human brain data. Specifically, we assessed the ability of models to predict the DW signal accurately for new diffusion gradients and b values. We did not evaluate the accuracy of estimated model parameters, as a ground truth is hard to obtain. We used the Connectome scanner at the Massachusetts General Hospital, using gradient strengths of up to 300mT/m and a broad set of diffusion times. We focused on assessing the DW signal prediction in two regions: the genu in the corpus callosum, where the fibres are relatively straight and parallel, and the fornix, where the configuration of fibres is more complex. The challenge participants had access to three-quarters of the dataset and their models were ranked on their ability to predict the remaining unseen quarter of the data. The challenge provided a unique opportunity for a quantitative comparison of diverse methods from multiple groups worldwide. The comparison of the challenge entries reveals interesting trends that could potentially influence the next generation of diffusion-based quantitative MRI techniques. The first is that signal models do not necessarily outperform tissue models; in fact, of those tested, tissue models rank highest on average. The second is that assuming a non-Gaussian (rather than purely Gaussian) noise model provides little improvement in prediction of unseen data, although it is possible that this may still have a beneficial effect on estimated parameter values. The third is that preprocessing the training data, here by omitting signal outliers, and using signal-predicting strategies, such as bootstrapping or cross-validation, could benefit the model fitting. The analysis in this study provides a benchmark for other models and the data remain available to build up a more complete comparison in the future.
  •  
3.
  • Wiggermann, Vanessa, et al. (författare)
  • In vivo investigation of the multi‐exponential T2 decay in human white matter at 7 T: Implications for myelin water imaging at UHF
  • 2021
  • Ingår i: NMR in Biomedicine. - : Wiley. - 0952-3480 .- 1099-1492. ; 34:2
  • Tidskriftsartikel (refereegranskat)abstract
    • IntroductionMulti‐component T2 mapping using a gradient‐ and spin‐echo (GraSE) acquisition has become standard for myelin water imaging at 3 T. Higher magnetic field strengths promise signal‐to‐noise ratio benefits but face specific absorption rate limits and shortened T2 times. This study investigates compartmental T2 times in vivo and addresses advantages and challenges of multi‐component T2 mapping at 7 T.MethodsWe acquired 3D multi‐echo GraSE data in seven healthy adults at 7 T, with three subjects also scanned at 3 T. Stimulated echoes arising from B1+ inhomogeneities were accounted for by the extended phase graph (EPG) algorithm. We used the computed T2 distributions to determine T2 times that identify different water pools and assessed signal‐to‐noise and fit‐to‐noise characteristics of the signal estimation. We compared short T2 fractions and T2 properties of the intermediate water pool at 3 T and 7 T.ResultsFlip angle mapping confirmed that EPG accurately determined the larger B1+ inhomogeneity at 7 T. Multi‐component T2 analysis demonstrated shortened T2 times at 7 T compared with 3 T. Fit‐to‐noise and signal‐to‐noise ratios were improved at 7 T but depended on B1+ homogeneity. Adjusting the shortest T2 to 8 ms and the T2 threshold that separates different water compartments to 20 ms yielded short T2 fractions at 7 T that conformed to 3 T data. Short T2 fractions in myelin‐rich white matter regions were lower at 7 T than at 3 T, and higher in iron‐rich structures.DiscussionAdjusting the T2 compartment boundaries was required due to the shorter T2 relaxation times at 7 T. Shorter echo spacing would better sample the fast decaying signal but would increase peripheral nerve stimulation. Multi‐channel transmission will improve T2 measurements at 7 T.ConclusionWe used a multi‐echo 3D GraSE sequence to characterize the multi‐exponential T2 decay at 7 T. We adapted T2 parameters for evaluation of the short T2 fraction. Obtained 7 T multi‐component T2 maps were in good agreement with 3 T data.
  •  
4.
  • Zufiria, Blanca, et al. (författare)
  • A feature-based convolutional neural network for reconstruction of interventional MRI
  • 2019
  • Ingår i: NMR in Biomedicine. - : John Wiley and Sons Ltd. - 0952-3480 .- 1099-1492.
  • Tidskriftsartikel (refereegranskat)abstract
    • Real-time interventional MRI (I-MRI) could help to visualize the position of the interventional feature, thus improving patient outcomes in MR-guided neurosurgery. In particular, in deep brain stimulation, real-time visualization of the intervention procedure using I-MRI could improve the accuracy of the electrode placement. However, the requirements of a high undersampling rate and fast reconstruction speed for real-time imaging pose a great challenge for reconstruction of the interventional images. Based on recent advances in deep learning (DL), we proposed a feature-based convolutional neural network (FbCNN) for reconstructing interventional images from golden-angle radially sampled data. The method was composed of two stages: (a) reconstruction of the interventional feature and (b) feature refinement and postprocessing. With only five radially sampled spokes, the interventional feature was reconstructed with a cascade CNN. The final interventional image was constructed with a refined feature and a fully sampled reference image. With a comparison of traditional reconstruction techniques and recent DL-based methods, it was shown that only FbCNN could reconstruct the interventional feature and the final interventional image. With a reconstruction time of ~ 500 ms per frame and an acceleration factor of ~ 80, it was demonstrated that FbCNN had the potential for application in real-time I-MRI.
  •  
5.
  • Ahlgren, André, et al. (författare)
  • Quantification of microcirculatory parameters by joint analysis of flow-compensated and non-flow-compensated intravoxel incoherent motion (IVIM) data.
  • 2016
  • Ingår i: NMR in Biomedicine. - : Wiley. - 0952-3480 .- 1099-1492. ; 29:5, s. 640-649
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to improve the accuracy and precision of perfusion fraction and blood velocity dispersion estimates in intravoxel incoherent motion (IVIM) imaging, using joint analysis of flow-compensated and non-flow-compensated motion-encoded MRI data. A double diffusion encoding sequence capable of switching between flow-compensated and non-flow-compensated encoding modes was implemented. In vivo brain data were collected in eight healthy volunteers and processed using the joint analysis. Simulations were used to compare the performance of the proposed analysis method with conventional IVIM analysis. With flow compensation, strong rephasing was observed for the in vivo data, approximately cancelling the IVIM effect. The joint analysis yielded physiologically reasonable perfusion fraction maps. Estimated perfusion fractions were 2.43 ± 0.81% in gray matter, 1.81 ± 0.90% in deep gray matter, and 1.64 ± 0.72% in white matter (mean ± SD, n = 8). Simulations showed improved accuracy and precision when using joint analysis of flow-compensated and non-flow-compensated data, compared with conventional IVIM analysis. Double diffusion encoding with flow compensation was feasible for in vivo imaging of the perfusion fraction in the brain. The strong rephasing implied that blood flowing through the cerebral microvascular system was closer to the ballistic limit than the diffusive limit. © 2016 The Authors NMR in Biomedicine published by John Wiley & Sons Ltd.
  •  
6.
  • Borga, Magnus, et al. (författare)
  • Validation of a Fast Method for Quantification of Intra-abdominal and Subcutaneous Adipose Tissue for Large Scale Human Studies
  • 2015
  • Ingår i: NMR in Biomedicine. - : John Wiley & Sons. - 1099-1492 .- 0952-3480. ; 28:12, s. 1747-1753
  • Tidskriftsartikel (refereegranskat)abstract
    • Central obesity is the hallmark of a number of non-inheritable disorders. The advent of imaging techniques such as magnetic resonance imaging (MRI) has allowed for a fast and accurate assessment of body fat content and distribution. However, image analysis continues to be one of the major obstacles for the use of MRI in large scale studies. In this study we assess the validity of the recently proposed fat-muscle-quantitation-system (AMRATM Profiler) for the quantification of intra-abdominal adipose tissue (IAAT) and abdominal subcutaneous adipose tissue (ASAT) from abdominal MR images.  Abdominal MR images were acquired from 23 volunteers with a broad range of BMIs and analysed using SliceOmatic, the current gold-standard, and the AMRATM Profiler based on a non-rigid image registration of a library of segmented atlases. The results show that there was a highly significant correlation between the fat volumes generated by both analysis methods, (Pearson correlation r = 0.97 p<0.001), with the AMRATM Profiler analysis being significantly faster (~3 mins) than the conventional SliceOmatic approach (~40 mins). There was also excellent agreement between the methods for the quantification of IAAT (AMRA 4.73 ± 1.99 vs SliceOmatic 4.73 ± 1.75 litres, p=0.97). For the AMRATM Profiler analysis, the intra-observer coefficient of variation was 1.6 % for IAAT and 1.1 % for ASAT, the inter-observer coefficient of variation was 1.4 % for IAAT and 1.2 % for ASAT, the intra-observer correlation was 0.998 for IAAT and 0.999 for ASAT, and the inter-observer correlation was 0.999 for both IAAT and ASAT. These results indicate that precise and accurate measures of body fat content and distribution can be obtained in a fast and reliable form by the AMRATM Profiler, opening up the possibility of large-scale human phenotypic studies.
  •  
7.
  • Brinkhof, S., et al. (författare)
  • Uncompromised MRI of knee cartilage while incorporating sensitive sodium MRI
  • 2019
  • Ingår i: NMR in Biomedicine. - : Wiley. - 0952-3480 .- 1099-1492.
  • Tidskriftsartikel (refereegranskat)abstract
    • Sodium imaging is able to assess changes in ion content, linked to glycosaminoglycan content, which is important to guide orthopeadic procedures such as articular cartilage repair. Sodium imaging is ideally performed using double tuned RF coils, to combine high resolution morphological imaging with biochemical information from sodium imaging to assess ion content. The proton image quality of such coils is often harshly degraded, with up to 50% of SNR or severe acceleration loss as compared to single tuned coils. Reasons are that the number of proton receive channels often severely reduced and double tuning will degrade the intrinsic sensitivity of the RF coil on at least one of the nuclei. However, the aim of this work was to implement a double-tuned sodium/proton knee coil setup without deterioration of the proton signal whilst being able to achieve acquisition of high SNR sodium images. A double-tuned knee coil was constructed as a shielded birdcage optimized for sodium and compromised for proton. To exclude any compromise, the proton part of the birdcage is used for transmit only and interfaced to RF amplifiers that can fully mitigate the reduced efficiency. In addition, a 15 channel single tuned proton receiver coil was embedded within the double-resonant birdcage to maintain optimal SNR and acceleration for proton imaging. To validate the efficiency of our coil, the designed coil was compared with the state-of-the-art single-tuned alternative at 7 T. B1+ corrected SNR maps were used to compare both coils on proton performance and g-factor maps were used to compare both coils on acceleration possibilities. The newly constructed double-tuned coil was shown to have comparable proton quality and acceleration possibilities to the single-tuned alternative while also being able to acquire high SNR sodium images.
  •  
8.
  •  
9.
  • Karlsson, Anette, 1986-, et al. (författare)
  • The effect on precision and T1 bias comparing two flip angles when estimating muscle fat infiltration using fat-referenced chemical shift-encoded imaging
  • 2021
  • Ingår i: NMR in Biomedicine. - : John Wiley & Sons. - 0952-3480 .- 1099-1492. ; 34:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Investigation of the effect on accuracy and precision of different parameter settings is important for quantitative Magnetic Resonance Imaging. The purpose of this study was to investigate T1-bias and precision for muscle fat infiltration (MFI) using fat-referenced chemical shift magnetic resonance imaging at 5° and 10° flip angle. This [MB1] experimental study was done on forty postmenopausal women using 3T MRI test and retest images using 4-point 3D spoiled gradient multi-echo acquisition including real and imaginary images for reconstruction acquired at Flip angles 5° and 10°. Post-processing included T2* correction and fat-referenced calibration of the fat signal. The mean MFI was calculated in six different automatically segmented muscle regions using both the fat-referenced fat signal and the fat fraction calculated from the fat and water image pair for each acquisition. The variance of the difference between mean MFI from test and retest was used as measure of precision. The SNR characteristics were analyzed by measuring difference of the full width half maximum of the fat signal distribution using Student’s t-test.There was no difference in the mean fat-referenced MFI at different flip angles with the fat-referenced technique, which was the case using the fat fraction. No significant difference in the precision was found in any of the muscles analyzed. However, the full width half maximum of the fat signal distribution was significantly lower at 10° flip angle compared to 5°. Fat-referenced MFI is insensitive to T1 bias in chemical shift magnetic resonance imaging enabling usage of a higher and more SNR effective flip angle. The lower full-width-at half-maximum in fat-referenced MFI at 10° indicates that high flip angle acquisition is advantageous although no significant differences in precision was observed comparing 5° and 10°.
  •  
10.
  • Müller, Christoph A., et al. (författare)
  • Dynamic 2D and 3D mapping of hyperpolarized pyruvate to lactate conversion in vivo with efficient multi-echo balanced steady-state free precession at 3 T
  • 2020
  • Ingår i: NMR in Biomedicine. - : Wiley. - 0952-3480 .- 1099-1492. ; 33:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to acquire the transient MRI signal of hyperpolarized tracers and their metabolites efficiently, for which specialized imaging sequences are required. In this work, a multi-echo balanced steady-state free precession (me-bSSFP) sequence with Iterative Decomposition with Echo Asymmetry and Least squares estimation (IDEAL) reconstruction was implemented on a clinical 3 T positron-emission tomography/MRI system for fast 2D and 3D metabolic imaging. Simulations were conducted to obtain signal-efficient sequence protocols for the metabolic imaging of hyperpolarized biomolecules. The sequence was applied in vitro and in vivo for probing the enzymatic exchange of hyperpolarized [1–13C]pyruvate and [1–13C]lactate. Chemical shift resolution was achieved using a least-square, iterative chemical species separation algorithm in the reconstruction. In vitro, metabolic conversion rate measurements from me-bSSFP were compared with NMR spectroscopy and free induction decay-chemical shift imaging (FID-CSI). In vivo, a rat MAT-B-III tumor model was imaged with me-bSSFP and FID-CSI. 2D metabolite maps of [1–13C]pyruvate and [1–13C]lactate acquired with me-bSSFP showed the same spatial distributions as FID-CSI. The pyruvate-lactate conversion kinetics measured with me-bSSFP and NMR corresponded well. Dynamic 2D metabolite mapping with me-bSSFP enabled the acquisition of up to 420 time frames (scan time: 180-350 ms/frame) before the hyperpolarized [1–13C]pyruvate was relaxed below noise level. 3D metabolite mapping with a large field of view (180 × 180 × 48 mm3) and high spatial resolution (5.6 × 5.6 × 2 mm3) was conducted with me-bSSFP in a scan time of 8.2 seconds. It was concluded that Me-bSSFP improves the spatial and temporal resolution for metabolic imaging of hyperpolarized [1–13C]pyruvate and [1–13C]lactate compared with either of the FID-CSI or EPSI methods reported at 3 T, providing new possibilities for clinical and preclinical applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy