SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0956 540X ;pers:(Sjöberg Lars E.)"

Sökning: L773:0956 540X > Sjöberg Lars E.

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abrehdary, Majid, et al. (författare)
  • The spherical terrain correction and its effect on the gravimetric-isostatic Moho determination
  • 2016
  • Ingår i: Geophysical Journal International. - : Oxford University Press. - 0956-540X .- 1365-246X .- 1687-885X .- 1687-8868. ; 204:1, s. 262-273
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, the Moho depth is estimated based on the refined spherical Bouguer gravity disturbance and DTM2006 topographic data using the Vening Meinesz-Moritz gravimetric-isostatic hypothesis. In this context, we compute the refined spherical Bouguer gravity disturbances in a set of 1 degrees x 1 degrees blocks. The spherical terrain correction, a residual correction to each Bouguer shell, is computed using rock heights and ice sheet thicknesses from the DTM2006 and Earth2014 models. The study illustrates that the defined simple Bouguer gravity disturbance corrected for the density variations of the oceans, ice sheets and sediment basins and also the non-isostatic effects needs a significant terrain correction to become the refined Bouguer gravity disturbance, and that the isostatic gravity disturbance is significantly better defined by the latter disturbance plus a compensation attraction. Our study shows that despite the fact that the lateral variation of the crustal depth is rather smooth, the terrain affects the result most significantly in many areas. The global numerical results show that the estimated Moho depths by the simple and refined spherical Bouguer gravity disturbances and the seismic CRUST1.0 model agree to 5.6 and 2.7 km in RMS, respectively. Also, the mean value differences are 1.7 and 0.2 km, respectively. Two regional numerical studies show that the RMS differences between the Moho depths estimated based on the simple and refined spherical Bouguer gravity disturbance and that using CRUST1.0 model yield fits of 4.9 and 3.2 km in South America and yield 3.2 and 3.4 km in Fennoscandia, respectively.
  •  
2.
  • Joud, Mehdi S. Shafiei, et al. (författare)
  • Use of GRACE Data to Detect the Present Land Uplift Rate in Fennoscandia
  • 2017
  • Ingår i: Geophysical Journal International. - : Oxford University Press (OUP). - 0956-540X .- 1365-246X. ; 209:2, s. 909-922
  • Tidskriftsartikel (refereegranskat)abstract
    • After more than 13 years of GRACE monthly data, the determined secular trend of gravity field variation can be used to study the regions of glacial isostatic adjustment (GIA). Here we focus on Fennoscandia where long-term terrestrial and high-quality GPS data are available, and we study the monthly GRACE data from three analysis centres. We present a new approximate formula to convert the secular trend of the GRACE gravity change to the land uplift rate without making assumptions of the ice load history. The question is whether the GRACE-derived land uplift rate by our method is related to GIA. A suitable post-processing method for the GRACE data is selected based on weighted RMS differences with the GPS data. The study reveals that none of the assumed periodic changes of the GRACE gravity field is significant in the estimation of the secular trend, and they can, therefore, be neglected. Finally, the GRACE-derived land uplift rates are obtained using the selected post-processing method, and they are compared with GPS land uplift rate data. The GPS stations with significant differences were marked using a statistical significance test. The smallest RMS difference (1.0 mm/a) was obtained by using GRACE data from the University of Texas.
  •  
3.
  • Sjöberg, Lars E. (författare)
  • On the isostatic gravity anomaly and disturbance and their applications to vening meinesz-moritz gravimetric inverse problem
  • 2013
  • Ingår i: Geophysical Journal International. - : Oxford University Press (OUP). - 0956-540X .- 1365-246X. ; 193:3, s. 1277-1282
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study,we showthat the traditionally defined Bouguer gravity anomaly needs a correction to become 'the no-topography gravity anomaly' and that the isostatic gravity anomaly is better defined by the latter anomaly plus a gravity anomaly compensation effect than by the Bouguer gravity anomaly plus a gravitational compensation effect. This is because only the newisostatic gravity anomaly completely removes and compensates for the topographic effect. F. A. Vening Meinesz' inverse problem in isostasy deals with solving for the Moho depth from the known external gravity field and mean Moho depth (known, e.g. from seismic reflection data) by a regional isostatic compensation using a flat Earth approximation. H. Moritz generalized the problem to that of a global compensation with a spherical mean Earth approximation. The problem can be formulated mathematically as that of solving a non-linear Fredholm integral equation. The solutions to these problems are based on the condition of isostatic balance of the isostatic gravity anomaly, and, theoretically, this assumption cannot be met by the old definition of the isostatic gravity anomaly. We show how the Moho geometry can be solved for the gravity anomaly, gravity disturbance and disturbing potential, etc., and, from a theoretical point of view, all these solutions are the same.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3
Typ av publikation
tidskriftsartikel (3)
Typ av innehåll
refereegranskat (3)
Författare/redaktör
Bagherbandi, Mohamma ... (2)
Abrehdary, Majid (1)
Joud, Mehdi S. Shafi ... (1)
Lärosäte
Kungliga Tekniska Högskolan (3)
Högskolan i Gävle (2)
Språk
Engelska (3)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (3)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy