SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0959 6658 OR L773:1460 2423 ;pers:(Ellervik Ulf)"

Sökning: L773:0959 6658 OR L773:1460 2423 > Ellervik Ulf

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Persson, Andrea, et al. (författare)
  • Fine-tuning the structure of glycosaminoglycans in living cells using xylosides
  • 2018
  • Ingår i: Glycobiology. - : Oxford University Press (OUP). - 0959-6658 .- 1460-2423. ; 28:7, s. 499-511
  • Tidskriftsartikel (refereegranskat)abstract
    • Xylosides can induce the formation and secretion of xyloside-primed glycosaminoglycans when administered to living cells; however, their impact on the detailed glycosaminoglycan structure remains unknown. Here, we have systematically investigated how the xyloside concentration and the type of xyloside, as well as the cell type, influenced the structure of xyloside-primed glycosaminoglycans in terms of the heparan sulfate and chondroitin/dermatan sulfate proportion and disaccharide composition. We found that although greatest influence was exerted by the cell type, both the xyloside concentration and type of xyloside impacted the proportion of heparan sulfate and the complexity of chondroitin/dermatan sulfate. The disaccharide composition of the chondroitin/dermatan sulfate was influenced by the xyloside concentration and type of xyloside to a higher extent than that of the heparan sulfate; the proportion of 4S-sulfated disaccharides in the chondroitin/dermatan sulfate decreased and the proportions of 6S-sulfated and/or nonsulfated disaccharides increased both with increasing concentrations of xyloside and with increasing xyloside hydrophobicity, whereas the proportion of nonsulfated disaccharides was primarily altered in the heparan sulfate with increasing concentrations of xyloside. Our results indicate that it is feasible to not only produce large amounts of glycosaminoglycans in living cells but also to fine-tune their structures by using xylosides of different types and at different concentrations.
  •  
2.
  • Mani, Katrin, et al. (författare)
  • Tumor attenuation by 2(6-hydroxynaphthyl)-{beta}-D-xylopyranoside requires priming of heparan sulfate and nuclear targeting of the products.
  • 2004
  • Ingår i: Glycobiology. - : Oxford University Press (OUP). - 1460-2423. ; 14:5, s. 387-397
  • Tidskriftsartikel (refereegranskat)abstract
    • We have previously reported that the heparan sulfate-priming glycoside 2-(6-hydroxynaphthyl)-ß-D-xylopyranoside selectively inhibits growth of transformed or tumor-derived cells. To investigate the specificity of this xyloside various analogs were synthesized and tested in vitro. Selective growth inhibition was dependent on the presence of a free 6-hydroxyl in the aglycon. Because cells deficient in heparan sulfate synthesis were insensitive to the xyloside, we conclude that priming of heparan sulfate synthesis was required for growth inhibition. In growth-inhibited cells, heparan sulfate chains primed by the active xyloside were degraded to products that contained anhydromannose and appeared in the nuclei. Hence the degradation products were generated by nitric oxide–dependent cleavage. Accordingly, nitric oxide depletion reduced nuclear localization of the degradation products and counteracted the growth-inhibitory effect of the xyloside. We propose that 2-(6-hydroxynaphthyl)-ß-D-xylopyranoside entered cells and primed synthesis of heparan sulfate chains that were subsequently degraded by nitric oxide into products that accumulated in the nucleus. In vivo experiments demonstrated that the xyloside administered subcutaneously, perorally, or intraperitoneally was adsorbed and made available to tumor cells located subcutaneously. Treatment with the xyloside reduced the average tumor load by 70–97% in SCID mice. The present xyloside may serve as a lead compound for the development of novel antitumor strategies.
  •  
3.
  • Tykesson, Emil, et al. (författare)
  • Recombinant dermatan sulfate is a potent activator of heparin cofactor II-dependent inhibition of thrombin
  • 2019
  • Ingår i: Glycobiology. - : Oxford University Press (OUP). - 1460-2423. ; 29:6, s. 446-451
  • Tidskriftsartikel (refereegranskat)abstract
    • The glycosaminoglycan dermatan sulfate (DS) is a well-known activator of heparin cofactor II-dependent inactivation of thrombin. In contrast to heparin, dermatan sulfate has never been prepared recombinantly from material of non-animal origin. Here we report on the enzymatic synthesis of structurally well-defined DS with high anticoagulant activity. Using a microbial K4 polysaccharide and the recombinant enzymes DS-epimerase 1, dermatan 4-O-sulfotransferase 1, uronyl 2-O-sulfotransferase and N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase, several new glycostructures have been prepared, such as a homogenously sulfated IdoA-GalNAc-4S polymer and its 2-O-, 6-O- and 2,6-O-sulfated derivatives. Importantly, the recombinant highly 2,4-O-sulfated DS inhibits thrombin via heparin cofactor II, approximately 20 times better than heparin, enabling manipulation of vascular and extravascular coagulation. The potential of this method can be extended to preparation of specific structures that are of importance for binding and activation of cytokines, and control of inflammation and metastasis, involving extravasation and migration.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy