SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "L773:0964 6906 OR L773:1460 2083 ;pers:(Andersen Peter M.)"

Sökning: L773:0964 6906 OR L773:1460 2083 > Andersen Peter M.

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Birve, Anna, et al. (författare)
  • A novel SOD1 splice site mutation associated with familial ALS revealed by SOD activity analysis
  • 2010
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 19:21, s. 4201-4206
  • Tidskriftsartikel (refereegranskat)abstract
    • More than 145 mutations have been found in the gene CuZn-Superoxide dismutase (SOD1) in patients with amyotrophic lateral sclerosis (ALS). The vast majority are easily detected nucleotide mutations in the coding region. In a patient from a Swiss ALS family with half-normal erythrocyte SOD1 activity, exon flanking sequence analysis revealed a novel thymine to guanine mutation 7 bp upstream of exon 4 (c.240-7T>G). The results of splicing algorithm analyses were ambiguous, but five out of seven analysis tools suggested a potential novel splice site that would add six new base pairs to the mRNA. If translated, this mRNA would insert Ser and Ile between Glu78 and Arg79 in the SOD1 protein. In fibroblasts from the patient, the predicted mutant transcript and the mutant protein were both highly expressed, and despite the location of the insertion into the metal ion-binding loop IV, the SOD1 activity appeared high. In erythrocytes, which lack protein synthesis and are old compared with cultured fibroblasts, both SOD1 protein and enzymic activity was 50% of controls. Thus, the usage of the novel splice site is near 100%, and the mutant SOD1 shows the reduced stability typical of ALS-associated mutant SOD1s. The findings suggests that this novel intronic mutation is causing the disease and highlights the importance of wide exon-flanking sequencing and transcript analysis combined with erythrocyte SOD1 activity analysis in comprehensive search for SOD1 mutations in ALS. We find that there are potentially more SOD1 mutations than previously reported.
  •  
2.
  • Blauw, Hylke M, et al. (författare)
  • A large genome scan for rare CNVs in amyotrophic lateral sclerosis
  • 2010
  • Ingår i: Human Molecular Genetics. - : Oxford Journals. - 0964-6906 .- 1460-2083. ; 19:20, s. 4091-4099
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease selectively affecting motor neurons in the brain and spinal cord. Recent genome-wide association studies (GWASs) have identified several common variants which increase disease susceptibility. In contrast, rare copy-number variants (CNVs), which have been associated with several neuropsychiatric traits, have not been studied for ALS in well-powered study populations. To examine the role of rare CNVs in ALS susceptibility, we conducted a CNV association study including over 19,000 individuals. In a genome-wide screen of 1875 cases and 8731 controls, we did not find evidence for a difference in global CNV burden between cases and controls. In our association analyses, we identified two loci that met our criteria for follow-up: the DPP6 locus (OR = 3.59, P = 6.6 × 10(-3)), which has already been implicated in ALS pathogenesis, and the 15q11.2 locus, containing NIPA1 (OR = 12.46, P = 9.3 × 10(-5)), the gene causing hereditary spastic paraparesis type 6 (HSP 6). We tested these loci in a replication cohort of 2559 cases and 5887 controls. Again, results were suggestive of association, but did not meet our criteria for independent replication: DPP6 locus: OR = 1.92, P = 0.097, pooled results: OR = 2.64, P = 1.4 × 10(-3); NIPA1: OR = 3.23, P = 0.041, pooled results: OR = 6.20, P = 2.2 × 10(-5)). Our results highlight DPP6 and NIPA1 as candidates for more in-depth studies. Unlike other complex neurological and psychiatric traits, rare CNVs with high effect size do not play a major role in ALS pathogenesis.
  •  
3.
  • Brockmann, Sarah J., et al. (författare)
  • CHCHD10 mutations p.R15L and p.G66V cause motoneuron disease by haploinsufficiency
  • 2018
  • Ingår i: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 27:4, s. 706-715
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in the mitochondrially located protein CHCHD10 cause motoneuron disease by an unknown mechanism. In this study, we investigate the mutations p. R15L and p. G66V in comparison to wild-type CHCHD10 and the non-pathogenic variant p. P34S in vitro, in patient cells as well as in the vertebrate in vivo model zebrafish. We demonstrate a reduction of CHCHD10 protein levels in p. R15L and p. G66V mutant patient cells to approximately 50%. Quantitative real-time PCR revealed that expression of CHCHD10 p. R15L, but not of CHCHD10 p. G66V, is already abrogated at the mRNA level. Altered secondary structure and rapid protein degradation are observed with regard to the CHCHD10 p. G66V mutant. In contrast, no significant differences in expression, degradation rate or secondary structure of non-pathogenic CHCHD10 p. P34S are detected when compared with wild-type protein. Knockdown of CHCHD10 expression in zebrafish to about 50% causes motoneuron pathology, abnormal myofibrillar structure and motility deficits in vivo. Thus, our data show that the CHCHD10 mutations p. R15L and p. G66V cause motoneuron disease primarily based on haploinsufficiency of CHCHD10.
  •  
4.
  • Eschbach, Judith, et al. (författare)
  • PGC-1 is a male-specific disease modifier of human and experimental amyotrophic lateral sclerosis
  • 2013
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 22:17, s. 3477-3484
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is a devastating, adult-onset neurodegenerative disorder of the upper and lower motor systems. It leads to paresis, muscle wasting and inevitably to death, typically within 35 years. However, disease onset and survival vary considerably ranging in extreme cases from a few months to several decades. The genetic and environmental factors underlying this variability are of great interest as potential therapeutic targets. In ALS, men are affected more often and have an earlier age of onset than women. This gender difference is recapitulated in transgenic rodent models, but no underlying mechanism has been elucidated. Here we report that SNPs in the brain-specific promoter region of the transcriptional co-activator PGC-1, a master regulator of metabolism, modulate age of onset and survival in two large and independent ALS populations and this occurs in a strictly male-specific manner. In complementary animal studies, we show that deficiency of full-length (FL) Pgc-1 leads to a significantly earlier age of onset and a borderline shortened survival in male, but not in female ALS-transgenic mice. In the animal model, FL Pgc-1-loss is associated with reduced mRNA levels of the trophic factor Vegf-A in males, but not in females. In summary, we indentify PGC-1 as a novel and clinically relevant disease modifier of human and experimental ALS and report a sex-dependent effect of PGC-1 in this neurodegenerative disorder.
  •  
5.
  • Fogh, Isabella, et al. (författare)
  • A genome-wide association meta-analysis identifies a novel locus at 17q11.2 associated with sporadic amyotrophic lateral sclerosis
  • 2014
  • Ingår i: Human Molecular Genetics. - Oxford : Oxford University Press. - 0964-6906 .- 1460-2083. ; 23:8, s. 2220-2231
  • Tidskriftsartikel (refereegranskat)abstract
    • Identification of mutations at familial loci for amyotrophic lateral sclerosis (ALS) has provided novel insights into the aetiology of this rapidly progressing fatal neurodegenerative disease. However, genome-wide association studies (GWAS) of the more common (90) sporadic form have been less successful with the exception of the replicated locus at 9p21.2. To identify new loci associated with disease susceptibility, we have established the largest association study in ALS to date and undertaken a GWAS meta-analytical study combining 3959 newly genotyped Italian individuals (1982 cases and 1977 controls) collected by SLAGEN (Italian Consortium for the Genetics of ALS) together with samples from Netherlands, USA, UK, Sweden, Belgium, France, Ireland and Italy collected by ALSGEN (the International Consortium on Amyotrophic Lateral Sclerosis Genetics). We analysed a total of 13 225 individuals, 6100 cases and 7125 controls for almost 7 million single-nucleotide polymorphisms (SNPs). We identified a novel locus with genome-wide significance at 17q11.2 (rs34517613 with P 1.11 10(8); OR 0.82) that was validated when combined with genotype data from a replication cohort (P 8.62 10(9); OR 0.833) of 4656 individuals. Furthermore, we confirmed the previously reported association at 9p21.2 (rs3849943 with P 7.69 10(9); OR 1.16). Finally, we estimated the contribution of common variation to heritability of sporadic ALS as 12 using a linear mixed model accounting for all SNPs. Our results provide an insight into the genetic structure of sporadic ALS, confirming that common variation contributes to risk and that sufficiently powered studies can identify novel susceptibility loci.
  •  
6.
  • Graffmo, Karin S., et al. (författare)
  • Expression of wild-type human superoxide dismutase-1 in mice causes amyotrophic lateral sclerosis
  • 2013
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 22:1, s. 51-60
  • Tidskriftsartikel (refereegranskat)abstract
    • A common cause of amyotrophic lateral sclerosis (ALS) is mutations in the gene encoding superoxide dismutase-1. There is evolving circumstantial evidence that the wild-type protein can also be neurotoxic and that it may more generally be involved in the pathogenesis of ALS. To test this proposition more directly, we generated mice that express wild-type human superoxide dismutase-1 at a rate close to that of mutant superoxide dismutase-1 in the commonly studied G93A transgenic model. These mice developed an ALS-like syndrome and became terminally ill after around 370 days. The loss of spinal ventral neurons was similar to that in the G93A and other mutant superoxide dismutase-1 models, and large amounts of aggregated superoxide dismutase-1 were found in spinal cords, but also in the brain. The findings show that wild-type human superoxide dismutase-1 has the ability to cause ALS in mice, and they support the hypothesis of a more general involvement of the protein in the disease in humans.
  •  
7.
  • Lee, Teresa, et al. (författare)
  • Ataxin-2 intermediate-length polyglutamine expansions in European ALS patients
  • 2011
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 20:9, s. 1697-1700
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disease primarily affecting motor neurons. We recently identified intermediate-length polyglutamine (polyQ) expansions (27-33 Qs) in ataxin 2 as a genetic risk factor for sporadic ALS in North American ALS patients. To extend these findings, we assessed the ataxin 2 polyQ repeat length in 1294 European ALS patients and 679 matched healthy controls. We observed a significant association between polyQ expansions and ALS (>30 Qs; P= 6.2 × 10(-3)). Thus, intermediate-length ataxin 2 polyQ repeat expansions are associated with increased risk for ALS also in the European cohort. The specific polyQ length cutoff, however, appears to vary between different populations, with longer repeat lengths showing a clear association. Our findings support the hypothesis that ataxin 2 plays an important role in predisposing to ALS and that polyQ expansions in ataxin 2 are a significant risk factor for the disease.
  •  
8.
  • Nordin, Angelica, et al. (författare)
  • Extensive size variability of the GGGGCC expansion in C9orf72 in both neuronal and non-neuronal tissues in 18 patients with ALS or FTD
  • 2015
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 24:11, s. 3133-3142
  • Tidskriftsartikel (refereegranskat)abstract
    • A GGGGCC-repeat expansion in C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) among Caucasians. However, little is known about the variability of the GGGGCC expansion in different tissues and whether this correlates with the observed phenotype. Here, we used Southern blotting to estimate the size of hexanucleotide expansions in C9orf72 in neural and non-neural tissues from 18 autopsied ALS and FTD patients with repeat expansion in blood. Digitalization of the Southern blot images allowed comparison of repeat number, smear distribution and expansion band intensity between tissues and between patients. We found marked intra-individual variation of repeat number between tissues, whereas there was less variation within each tissue group. In two patients, the size variation between tissues was extreme, with repeat numbers below 100 in all studied non-neural tissues, whereas expansions in neural tissues were 20-40 times greater and in the same size range observed in neural tissues of the other 16 patients. The expansion pattern in different tissues could not distinguish between diagnostic groups and no correlation was found between expansion size in frontal lobe and occurrence of cognitive impairment. In ALS patients, a less number of repeats in the cerebellum and parietal lobe correlated with earlier age of onset and a larger number of repeats in the parietal lobe correlated with a more rapid progression. In 43 other individuals without repeat expansion in blood, we find that repeat sizes up to 15 are stable, as no size variation between blood, brain and spinal cord was found.
  •  
9.
  • Ohta, Yasuyuki, et al. (författare)
  • Sex-dependent effects of chromogranin B P413L allelic variant as disease modifier in amyotrophic lateral sclerosis
  • 2016
  • Ingår i: Human Molecular Genetics. - : OXFORD UNIV PRESS. - 0964-6906 .- 1460-2083. ; 25:21, s. 4771-4786
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent genetic studies yielded conflicting results regarding a role for the variant chromogranin B (CHGB)(P413L) allele as a disease modifier in ALS. Moreover, potential deleterious effects of the CHG(BP413L) variant in ALS pathology have not been investigated. Here we report that in transfected cultured cells, the variant CHGB(L413) protein exhibited aberrant properties including mislocalization, failure to interact with mutant superoxide dismutase 1 (SOD1) and defective secretion. The CHGB(L413) transgene in SOD1(G37R) mice precipitated disease onset and pathological changes related to misfolded SOD1 specifically in female mice. However, the CHGB(L413) variant also slowed down disease progression in SOD1(G37R) mice, which is in line with a very slow disease progression that we report for a Swedish woman with ALS who is carrier of two mutant SOD1(D90A) alleles and two variant CHGB(P413)L and CHGB(R458Q) alleles. In contrast, overexpression of the common CHGB(P413) allele in SOD1(G37R) mice did not affect disease onset but significantly accelerated disease progression and pathological changes. As in transgenic mice, the CHGB(P413L) allele conferred an earlier ALS disease onset in women of Japanese and French Canadian origins with less effect in men. Evidence is presented that the sex-dependent effects of CHGB(L413) allelic variant in ALS may arise from enhanced neuronal expression of CHGB in females because of a sex-determining region Y element in the gene promoter. Thus, our results suggest that CHGB variants may act as modifiers of onset and progression in some ALS populations and especially in females because of higher expression levels compared to males.
  •  
10.
  • Prudencio, Mercedes, et al. (författare)
  • Variation in aggregation propensities among ALS-associated variants of SOD1 : correlation to human disease
  • 2009
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 18:17, s. 3217-3226
  • Tidskriftsartikel (refereegranskat)abstract
    • To date, 146 different mutations in superoxide dismutase 1 (SOD1) have been identified in patients with familial amyotrophic lateral sclerosis (ALS). The mean age of disease onset in patients inheriting mutations in SOD1 is 45-47 years of age. However, although the length of disease duration is highly variable, there are examples of consistent disease durations associated with specific mutations (e. g. A4V, less than 2 years). In the present study, we have used a large set of data from SOD1-associated ALS pedigrees to identify correlations between disease features and biochemical/biophysical properties of more than 30 different variants of mutant SOD1. Using a reliable cell culture assay, we show that all ALS-associated mutations in SOD1 increase the inherent aggregation propensity of the protein. However, the relative propensity to do so varied considerably among mutants. We were not able to explain the variation in aggregation rates by differences in known protein properties such as enzyme activity, protein thermostability, mutation position or degree of change in protein charge. Similarly, we were not able to explain variability in the duration of disease in SOD1-associated ALS pedigrees by these properties. However, we find that the majority of pedigrees in which patients exhibit reproducibly short disease durations are associated with mutations that show a high inherent propensity to induce aggregation of SOD1.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy